TR

T

T e — T ST AR P

.

|

Europ. J. Combinatorics (1989) 10, 575-584

Invariant Groups on Equivalent Crystallizations}
SOSTENES LiNs

For each n-crystallization H, n=2, we associate two sequences of groups Ef(H),
O<k=n-1. These groups are proved to be invariant under the crystallization moves [4].
Therefore they are topological invariants for the closed PL n-manifolds. From the second term
on cach member of each sequence is a quotient group of its predecessor; also each £7(H) is a

quotient of §z(H). By the main result of [8], £&_,(H) (the smallest group) is the fundamental
group of |K(H)|. -

1. INTRODUCTION

An (n+1)-graph (r=2) is a graph which is finite, regular of valence n +1 and
properly edge-colored (i.e. at each vertex no two edges have the same color) with n + 1
colors. For the basic concepts from graph theory we refer to [1]. There exists a
standard construction which associated to an (n + 1)-graph G a pseudo-complex [9, p.
49] K(G) such that |K(G)| is a pseudo-manifold of dimension n. See the preliminares
of [5] for this construction. Let A, ={0, 1, ..., n} be the set of colors of the edges of
an (n + 1)-graph G. For 9 a subset of A, denote by G the subgraph of G induced by
all the edges with colors in % and by 9 the complement of % in A,,. A ®B-residue [17] is
a connected component of Ggz. A B-residue, where B has k colors, is also called a
k-residue. A 2-residue is also called a bigon [11] (bicolored polygon). A bigon in color
i and j is specified as an (i, j)-gon. If for each i every n-residue R; of G; is such that
|K(R;)| is homeomorphic to the (n — 1)-sphere, then the pseudo-manifold |K(G)| is a
closed n-manifold. In this case G is called a gem (graph-encoded manifold). For n =3
there are simple arithmetical conditions which characterize when a 4-graph is a gem [7,
13). For n =2 there are no restrictions: a 3-graph always induces a closed surface. For
n=4, 5 this characterization is an open problem. For n =6 the algorithmic problem
associated with this characterization is undecidable [18]. An important fact about gems
is that every closed PL n-manifold M" is represented by a gem in the sense that
M" =|K(G)| for some gem G. An (n + 1)-graph is called an n-crystallization [2, 16] if
G is a gem and every G; i€ A,, is connected. Every closed PL n-manifold is
represented by a crystallization. See [15], [2] or [13] for a direct construction (made for
n =3 but which easily generalizes).

Crystallization theory has recently provided a beautiful characterization (non-
algorithmic) for the n-sphere [6]. Moreover, it yields a completely graph-theoretical
counterpart for homeomorphisms between closed PL n-manifolds [4]. This result has
been considerably sharpened by the Switching Lemma proved in [3]. The topological
invariance of our groups relies on the basic results of the last two articles, which are
summarized in the next section.

2. Basic RESULTS ON CRYSTALLIZATIONS

Suppose that y is an edge of an (n + 1)-graph G. Denote by %, the set of colors of all
the edges with the same ends as y. The edge y is separating if its ends belong to distinct
%B-residues. The edge y is separating if its ends belong to distinct 9%,-residues. The
fusion [13] of y is the process of deletion of the ends of y together with all the edges
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linking them followed by the welding of the free ends along edges of the same color.
The resulting (n + 1)-graph is denoted G(fus)y. If G is a gem and y is separating, then
|K(G)|=|K(G(fus)y)| [4]. In this case the set of h edges with the same two ends as y
(y included) is called an h-dipole and the fusion of y or any parallel to it is a
cancellation of the h-dipole. The inverse operation is named a creation of h-dipole. The
colors in 9, are said to be involved [3] in the dipole cancellation or creation. The
following two modifications of an n-crystallization yielding another are -called
crystallization moves:

(i) creation of a 1-dipole followed by the cancellation of another 1-dipole;
(ii) creation or cancellation of an A-dipole, 1 <h <n.

EQUIVALENCE THEOREM [4]. Let H and J be n-crystallizations. The n-manifolds
|K(H)| and /K(J])| are homeomorphic iff J is obtainable from H by a finite sequence of
crystallization moves.

Crystallizations representing the same manifold are equivalent crystallizations:

SwitcHING Lemma [3]. Let H;; denote the crystallization obtained from an n-
crystallization H by exchanging two distinct arbitrary colors i and j. Then Hj is
obtainable from H by a finite sequence of crystallization moves, each one of these
involving color i and not involving color j.

To prove the invariance of our groups we need (i) of the following corollary of the
Switching Lemma:

STRONG EQUIVALENCE THEOREM [3). The n-crystallizations H and J are equivalent iff
they are equivalent under crystallizations moves that (for the whole sequence of moves)
either

(i) always involve a fixed color i, or
(if) never involve color i.

3. Grour &", (n+1)*-GrarHs aND Groups &}

Let H be an n-crystallization, n =2. We construct a group §"(H) as follows. For
groups given by generators and relations we refer to [14] or [10]. The generators of
£"(H) form an abstract set of symbols in one-to-one correspondence with the vertices
of H. This correspondence enables us to identify the set of generators with the set of
vertices V(H). The set of relators of £"(H) is in correspondence with the set of bigons
of H. A relator b; is constructed for each (i,j)-gon as follows. Let
V1, Us, - . - » Usm—1, V2 D€ the sequence of vertices around the (i, j)-gon with arbitrary
starting point and sense of traversal. Take b; to be v,v;' -+ - v,,,_,v3} if the vertices
with odd indices are the ones which make transitions from the greater to the smaller
color with respect to the chosen sense of traversal. If those vertices are the even
indexed ones, take b;; to be U7'Vz« + * Uzn_1Vsm. Let b;(H) be the set of all the relators
coming this way from the (i, j)-gons. Define also B(H) as | {B;(H)|0<i<j<n}.
The group &"(H) has, by definition, the presentation

E'(H)=[V(H) | B(H)].

THEOREM 1. The isomorphism class of the group E"(H) is invariant under the
crystallization moves. Therefore E"(H) is a topological invariant for the closed

- n-manifold |\K(H)|.
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To obtain the proof of this theorem we need to work with an adequate extension of
the class of crystallizations. In Corollary 1 of the last section we prove a result which
is more general than this theorem.

An (n + 1)*-graph is an (n + 1)-graph which has at most two 0-residues, exactly one
i-residue for i #0, and is such that each {i, j, k}-residue, 0 not in {i, j, k}, represents
the 2-sphere. In the terminology of [11] we say that each one of these 3-residues
faithfully embeds into a 2-sphere (the boundary of the faces are bigons). In fact the
faithful embedding of a 3-graph G is the dual of K(G). A 3-residue representing the
2-sphere is said to be spherical. The class of (n + 1)*-graphs contains the crystal-
lizations and is adequate for our purposes.

Let H be an (n + 1)*-graph and let V(H) be as before. Let k be a number between 0
and n — 1. By & we mean the subset of A, defined as the empty set, if K =0, or by
{1, ..., k} otherwise. Let Ry (H) be a set of symbols representing the ¥ -residues of
H. Let r, be the term in Ry (H) which corresponds to the X-residue containing vertex
v. We are going to adjoint Ry (H) to V(H) as a set of generators to define groups
generalizing §"(H). The set of relators Py(H) in the symbols V(H)U Ry (H) is
{vr;'| v e V(H)}. If H has a unique O-residue, we define, for 0 <k <n.

EX(H) = [V(H) U Ry(H) | B(H) U Py(H)].

Note that for k=0, §i(H) = E"(H) = V(H) since R\(H) =V (H) and Py(H) reduce to
trivial identities. If H has two O-residues, let U(H) U W (H) be the bipartition of V(H)
induced by these residues. Choose an arbitrary 4 in U(H) and an arbitrary W in W (H).
Define, for 0 <k <n,

Ei(H) = [V (H) U Ry (H) | B(H) U Py(H) U {uw™'}].

The chosen symbols u and w are called connectors.

4. INDEPENDENCE OF CONNECTORS

The definition of E}(H) has various arbitrary choices. Clearly, the choice of the
starting vertex to form a relator in B(H) is irrelevant, by the cyclic nature of relators
and by the imposition to adjust the sign in the exponents with the sense of traversal.
The groups seem to depend strongly on the ordering of the color (this is needed).
However, for crystallizations (see Corollary 2 in Section 7), this is not the case. Finally,
when H has two 0-residues, two arbitrary symbols, the connectors, enter the definition
of &%(H). Below we prove a lemma which shows that any choice of connectors
produces the same group. One more comment: by the presence of Py (H) the real
generators of groups are the #-residues (via its symbols). However, we keep the larger
presentation because it is adequate for the proof of Theorem 2 in Section 6.

Lemma 1. The isomorphism class of EX(H), when H has two O-residues, is
independent of the choice of connectors.

Proor. To simplify the notation we drop the argument H from V(H), Ry(H),
U(H), etc. We prove the lemma by showing that we can replace « by any other
member, say ¢, of U. Let Ry, (resp. Ry) be the subset of Ry formed by the ¥-residue
with vertices contained in U (resp. W). (From now on we may confound a ¥-residue
with its symbol, as we have been doing for the vertices.) Since a ¥#-residue does not
contain O-colored edges, any member of Ry has a vertex-set entirely contained in Ry, or
in R,,. Let S, =UU Ry and Sy, = W U Ry,. Also define S to be S, USy =V URy. Let
s— § be a one-to-one correspondence between S and a disjoint new set of symbols $.
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We now use Tietze transformations [10] to modify the presentation of E(H).
EXH)=[S|BUP,U{uw '}]=[SUS|BUP,U {uw™'}
U{ex tw™ | xeSutU{Py™" |y e Sw)l

The second equality holds because each new symbol appears alone in a unique new
relator. Next we want to show that the set of relators B and P, obtained from B and
P, by replacing each s by §, are equivalent to these and so can take their place in the
above presentation. Let [/, xz,-_lx;,-‘ be an arbitrary relator in BU Py. Let K(x) be
either wr™! or the identity in the group &;(H), depending on whether or not x € S;,. By
using the relations x; = [k(x;)]”"£; (equivalent to the new relators), we may rewrite the
above relator as

[k (x)]™ lfl{"_ijl fz_,jlk(xzj)[k(xzj+1)]—1f21+1}f2—nl:k(x2:n)~

If m =1 the product between curly brackets is to be considered the identity. This is the
case when the original relator is in Py. Note that for relators in this set k(x;) = k(x,) =
k(x2,). Therefore each such relator is equivalent to £,£5 ' and P, = Py. In the case that
the original relator is in B observe that the vertices x,; and x,;,, are linked by an edge
which is never O-colored (0 is the smallest color). (See Remark 1 after the proof.)
Therefore these vertices are in the same O-residue and k(x,;) = k(x+,). The preceding
equality holds mod 2m, namely k(xz,,,) %(x). Therefore the orlgmal relator is in
every case equivalent to /2 xz, ,le and so B =B. By using ww ™! to eliminate w we
obtain, where $* =5 — {w} and S, = S,, — {w}, the following presentation:

MH)=[SUSY | BUP,U{uw YU {Ex 't~ | x e Sy} U Py~ |y € S}
Now use uw™! to eliminate u. With $** =58 —{w, u}, S% =Sy — {1} we obtain
EH)=[SUS"|BUP,U (aw 'tw "} U {ix '™ | x e SEIU Jy " |y € S%)).
Finally use 4w 't ™! to eliminate ¢, obtaining
MH)Y=[SUS™|BUPyU(ix~Wa ™ [xeSEYU{ Uy |y e SW}]

Note that the symbols in $*“ =S — {w, u, t} appear just once. Eliminating these
symbols and the relators where they appear we obtain

ENH)=[S|BU B, Ui "} =[S | BUP,U (iw™"}].

which establishes the lemma. O

REMARK 1. The fact that each edge linking x,; to X, is never Q- colored is the unique
reason why we need to have a smallest color to establish that B=B. Thisisa point that
hinders a generalization of the (n + 1)*-graphs to include the gems.

5. REDUNDANCY ON SPHERICAL 3-RESIDUES

Given a connected graph M embedded into a 2-sphere we associate a group I, to it
as follows. Orient the edges of M arbitrarily. The generators of I, are symbols in
bijection with edges of M, and are identified with them. Its relators are in one-to-one
correspondence with the vertices of M. To obtain the relator corresponding to a vertex
v list once in clockwise order the edges incident to v. A generator receives the
exponent —1 if the edge is a directed towards v and +1 (no exponent) if the edge is
directed away from v. This finishes the description of I,,. The following proposition is
the basis for the resulis in this section. The proof is very simple and can be found in
[12]. '
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PrROPOSITION. Let m be a connected graph embedded into a 2-sphere. Each relator of
Iy is a consequence of the remaining relators.

Let i, j, k be distinct colors in A,. Let k be either the maximum or the minimum of
{i,j, k}. Let T'be an {i, j, k}-residue and, for h, l € A,, let BL(H) be B,,(H) restricted
to 7. All these conditions refer to an (n + 1)*-graph H. Under them we have:

LeMMA 2. If T has no O-colored edges, then each relator in BLUBL is a
consequence of the remaining relators.

Proor. Let M* denote a faithful embedding of T into a 2-sphere. We modify M* to
arrive at an M where we can use the above proposition. In the interior of each face of
M* bounded by an (i, k)-gon (resp. an (j, k)-gon) put a new vertex, calling it an
i-vertex (resp. a j-vertex). For each k-colored edge y with ends u and w link with two
lines, the i- and j-vertices, which lie in faces separated by y. One of these lines must
cross y near ¥ and the other must cross it near w. We call these two lines u and w.
Topologically these linking lines are to be closed intervals, with just the crossing point
in common with M*, and intersecting among themselves just in their ends, the i- and
J-vertices. These vertices and their linking lines form a graph embedded in the 2-sphere
which we call M. By this construction the edges of M are in one-to-one correspondence
with the vertices of M*, and the vertices of M are in one-to-one correspondence with
the (i, k)-gons and the (j, k)-gons of M*, embedded T. Choose an orientation for the
edges of M as follows. At each i-vertex the left and right lines corresponding to a
k-edge are respectively out-directed and in-directed. Thus [V" | B} U BL], where V7 is
V(H) restricted to T, is I},. The lemma follows from the proposition. O

ReMArk 2. The reader should observe that the condition k =max{i, j, k} or
k =min{i, j, k} is essential in the above proof. This lemma is the place where we take
advantage of the total ordering of the colors 1, 2, . . ., n. Here is the other point where
the generalization mentioned in Remark 1 is also hindered.

We now develop the concepts and notation needed in the next lemma. An edge y of
an (n + 1)*-graph H is said to be fusible if:

(i) y is separating and 0-colored;

(i) % =%, has at least two colors; 7

Let u be an end of a fusible edge y in an (n +1)*-graph H. Let b} be the relator in
B(H) associated to the (i, j)-gon containing u. Define f,, to be {b}|i, je ¥} and
B, ={b; | b is in the Y-residue containing u}. (Note that B,, contains ij-gons which
does not pass through u.) Let b, be equal to (B,, — B.,)U{bj}. Let H' be the
(n + 1)*-graph obtained from H by fusion of y. The analogous set of relators for H' are
as follows. For i, j € ¥, let b}; be the relator in B(H') corresponding to the (i, j)-gon
which contains the i- and j-colored edges welded in the fusion of y. Let B, be the set
{b%|i,je ¥} and B, be the subset of B(H') formed by the relators corresponding to
bigons in the ¥-residue which contains all the edges which were welded. Define b¥ to
be (B, — B,) U {b)}.

LemMma 3. Let y be a fusible edge in an (n + 1)*-graph H and let u be one of its ends.
Let H' denote H(fus)y and i <j two colors in ¥. We have: 4
(a) every relator in B, is implied by the ones in BY ;

uy s

(b) every relator in B, is implied by the ones in BY,
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Proor. The proofs of (a) and (b) are given in parallel. Let k € % be distinct from §
and j, and let T denote the {i, j, k}-residue containing the vertex u (in H). Also let T"
be the {i,j, k}-residue of H' which contains the edges colored i, j, k which were
welded. Suppose that k <i. By Lemma 2, b} is implied by Bf;U B] — (b} and b} is
implied by BY, U Bl' - {b%}. Also by Lemma 2, {b};} is implied by Bj;U Bi;— {b}
and b}, is implied by B, U BL' — {b};}. Thus BY, implies b}; and B} implies b}. Now
suppose that k >i. By Lemma 2, b} is a consequence of B;fU B/ — {bii} and b} is a
consequence of B} U B, — {b%}. For every k distinct from i and j we have found that

“ is implied by BY and b} is implied by B}. Therefore, if 4 is a fourth member of ¥,
b, is implied by B% < B, U {b%}, and b} is a consequence of B} By U {bh}: use
(i, k, k) in place of (i, j, k). For arbitrary colors h, k in % we have established that bj,
follows from BY, and that b}, from BY. This concludes the proofs of (a) and (b). O

6. INVARIANCE AND FusiBLE EDGEs

In this section the central result, namely Theorem 2, is proved. Initially we obtain
convenient presentations for the groups EZ(H) and EZ(H'). Let y be a fusible edge in
an (n + 1)*-graph H and let H' be H(fus)y. Let B; denote the set of relators in B(H)
which correspond to bigons with color in Y= B, not containing ends of y. Observe that
B; is also a subset of relators in B(H'). Denote by M the subset of relators in B (H),
the corresponding bigons of which have one color in % and one color in Y. Let M’
be the set of relators obtained from M by removing from its relators each adjacent
occurrence of u and w (the ends of y), the exponents of which add to zero. Note that
M' is also a subset of B(H'). Relators B(H) and B(H') are partitioned as

(*) B(H)y=MUB,UB,,UB,,UX, B(H)=M'UB;UB,,

where B,,, B,,, B, are as in Lemma 3, and X is either the empty set, in the case that
@ ={0}, or X ={uw™"'} otherwise. Let Py(H) be partitioned into {ur;', wr;'},
P,={xr;'#Py|x#ux#w}, P,={xr;'#Py|x#ux#w}, and the remaining
relators which we denote by Qy. Thus we have

() Po(H) = {ur;', wr;'YUP,UP,UQy, Py(H)=P,UQ,

where P, is P,U P, with every symbol r, replaced by r,. This replacement is in
accordance with the case that u and w belong to distinct ¥ -residues of H which became
the same of H'. The partition holds in every case: if ¥ = % then P,=P,=P,, = . If
% N Y+ P, then the H-residues of u and w survive as a common ¥-residue in H'. If
they are the same in H, then P,, = P, U P, and there is no need of the replacement. If
they are not the same the replacement is necessary. Clearly, Qy stays the same and
{ur;', wr,'} always disappears.

Let Bj; be as in Lemma 3. Define b and b} to be words in symbols V(H) so that
bi;=ub% and by =bjw™'. (We might have to invert b} and/or b} and negate
exponents to obtain the appropriate forms for the definitions of b2 and b}.) Note that

bib¥ is a relator in B(H') and that the following equality is verified:

(#5%) BY,U B, U{bib%} = BIU {ubk, biw™1}.

We irppose the condition that the two colors i and j above must be chosen in %. Since y
ls.fumble this set has at least two colors. Moreover, if # has a non-empty intersection
with %, i must be chosen in this intersection. Let S be V(H)U Ry (H) and let S' be
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Lemma 4. The following presentations hold:

(@) §2(H)=[S|ML:IBy«U[Bi’.'—{b}}b,7}'}]
U {ubl, biw™, ury, wry', uw="} UP, U P, U Oy ];
Q) EXH')=[S"|M'UB;UB))UP,, UQyul.

Proor. Part (a) follows from (***) and from Lemma 3(a) which permits the
replacement of the pair B,,, B, by Bl],, Bl so arriving, except for X, at the partitions
of B(H) and Px(H) given in (*) and (**). We have to take care of X, which might be
empty. But in this case H has two 0-residues and we choose u and w as connectors,
making sure that in every case {uw™'} is a relator. The proof of (b) follows from
Lemma 3(b) and from the partitions for B(H') and P, (H') given in (*) and (+*). O

THEOREM 2. Let y be a fusible edge in an (n + 1)*-graph H and H' = H (fus)y. Then
§x(H) = Ei(H").

Proor. The proof uses the presentations of Lemma 4 and is subdivided into two
parts according to whether % N @ is empty or not. Suppose first that it is empty. In this
case P,, P, and P,, are empty. Use uw™! to eliminate w. Note that w appears, perhaps
as r,,, 1n the three relators where it is explicitly written and in relators of M. This set
becomes M’ after the elimination of w and the simplifications of the occurrences of
uu~'. The current presentation for E3(H) is the following:

R(H)=[S"|M"UB;U[BY— {bIb3}]U {ubibfu=", ury®, ury, urg'} U Qyl.
Observe that now u occurs only in the four relators where it is explicitly written. If % is
empty, the relators ur;" and ur,;! are redundant, since at this point r,,, which is w, has
been replaced by u. We then use ubj to eliminate u and recover bjb% as a relator, thus
obtaining the presentation of £%(H') of Lemma 4(b). If ¥ is not empty, u and w are in
the same X -residue and r, =r,,. Use ur;! to eliminate u and then rub;f,- to eliminate 7,.
Since u and w are the only vertices of their common ¥-residue, we arrive at the
presentation of Lemma 4(b) once more.

Consider now that i is the color in the intersection of % and %. In this case the
relators ubj; and bjjw ™" are consequences of Py(H). To see this simply replace each x
in these relators by r,. The symbols which are vertices linked by an i-colored edge have
the same r, and are pairwise cancelled, making the whole relator disappear. Use uw™?
to eliminate w and obtain, from Lemma 4(a),

EX(H)=[S"|M"UB;U[BY = {bibi}]U {ur?, ury' Y UP, U P, U Qy).

Suppose « and w are in the same ¥*-residue. After the elimination of u via ur;! the
relator 7,r," is redundant and we obtain, except for the absence of b2b%, the same
presentation of Lemma 4(b). If « and w are not in the same %-residue, we use the
non-trivial relator r,r;"', obtained after the elimination of u, to eliminate 1., obtaining
the same presentation with the same absence as above. Observe that in both subcases
the #-residues of u and w survive as a common ¥-residue of H'. To conclude, note
that the relator b}bj in B(H') is implied by Py(H'): replacing each x by 7, makes it
disappear. 0O

7. COROLLARIES AND THE R0OOTED GROUPS

Theorem 1 of Section 3 is clearly a particular case of the following corollary:

 CoroLLARY 1. Let H and J be equivalent n-crystallizations. Then the groups E7(H)
and &E3(J) are isomorphic.
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- Proor. By part (i) of the Strong Equivalence Theorem, we may suppose that J is
obtainable from H by a finite sequence of crystallization moves, each of which involves
color 0. Let us call the inverse of the fusion of a fusible edge y, the antifusion creating
y. Note that each crystallization move restricted as above is either:

(i) the antifusion creating an edge y, followed by the fusion of a fusible y, with
@1 = (@ = {0}'

(i) the antifusion creating an edge y or the fusion of fusible edge y; in both cases with
y having at least another edge with the same ends.

With this observation the result is straightforward from Theorem 2; the proof of
Theorem 1 also finished. 0O

CoroLLARY 2. Let H be an n-crystallization. The isomorphism class of §i(H) does
not depend on the ordering of the colors of H.

Proor. It follows easily from the Switching Lemma that we can interchange two
arbitrary colors i and j of H, by crystallization moves involving color 0. Just note that
(i, )= (0, i) (0, j)°(0,i) is a valid identity on permutations of A,. With these
arbitrary interchanges we may obtain any desirable permutation of the colors without
changing the isomorphism class of £7(H). O

All the groups EZ(H), 0<k <n, are peculiar in that the generators of each relator
alternate %1 in their exponents. Call these presentations of abstract groups alternating
presentations.

LemMa 5. If P =[G | R] is an alternating presentation for a group P and a, b € G,
then the quotient groups [G | R U {a}] and [G | R U {b}] are isomorphic.

Proor. Let G be a set disjoint from G and in bijective correspondence with it via
g— §. Note that
[G|RU{a})]=[GUG|RU{a}U {#bx7" |x e G}].

Since R is alternating, R and R, obtained from R by £ «x, are equivalent. By using
the relator @ba™! to eliminate @ we obtain

[GUG*|RU{ab} U {tbx™"|x € G“}],
where G° = G — {a}. Now use the relator b to eliminate b, and obtain
[GUG®|RU {a'x™" | x e G*) U {b}]. )

where G® = G — {a, b}. Note that each symbol in G“® appears isolated in one relator.
By using these relators we can eliminate all the symbols in G, obtaining

[G|RU{B)]=[G|RU{b}]
and establishing the lemma. [J
Let H be an (n+1)*-graph. Define the rooted groups ENH), 0<sk<n, by

arbitrarily choosing a generator s of £4(H) and taking the quotient of this group by
including the relator s in its presentation. The generator s is called the root of EL(H).

CoroOLLARY 3. The isomorphism class of E}(H) does not depend on the choice of the
root. '
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Proor. It is enough to note that the presentation for x(H) is alternating, no

matter whether H has one or two 0O-residues. Then the corollary follows from Lemma
5. O '

CoroLLARY 4. Let H and J be equivalent n-crystallizations. Then EZ(H) = é;:(J)_

Proor. This result follows from Corollary 3 and from a repetition of the proof of
Theorem 2 for £i(H). It is enough to choose as the root the vertex distinct from the
ends of edge y at which we effect fusion in that proof. With this precaution the proof
goes through and we obtain Theorem 2 for the rooted groups.
we also obtain Corollary 1, which for rooted
corollary. O

Thus, in consequence,
groups is precisely the present

THEOREM 3. Let H be an n-crystallization. The group En_\(H) is the fundamental
group of |K(H)|. |

Proor. From the definition of £7_,(H) we may use the relators in P,(H) to obtain
only the {1,2,..., n —1}-residues as generators for this group. The only surviving
relators are the root and the ones corresponding to (0, n)-gons. This presentation,
foliowing from the main result in [8], defines the fundamental group of |K(H)|.

Conceivably, all the groups presented are simply related to the fundamental group.
There is empirical evidence that £Z(H) is n — k times the free product of 7w, (|[K(H)|).
This is the case in some small examples. A general proof has been elusive so far. A

missing link seems to be an appropriate definitions of these groups for the class of all
(n + 1)-graphs.
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