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ABSTRACT

In this paper we prove that two n-gems induce the same manifold if and only if
they are linked by a finite sequence of gem moves. A gem move is either a blob move,
consisting in the creation or cancellation of an n-dipole, or a clean flip, which is a switch
of a pair of edges of the same color that thickens an h-dipole, 1 ≤ h ≤ n − 1, or the
inverse operation, which slims an h-dipole, 2 ≤ h ≤ n. Moreover we prove that we can
reorder the gem moves, so that all the blob creations precede all clean flips which then
precede all the blob cancellations. This reordering is of interest because it is an easy
matter to decide whether two gems are linked by a finite sequence of clean flips. As a
consequence, if a bound for the number of blob creations is established, then there exists
a deterministic finite algorithm to decide whether two gems induce the same manifold
or not.

Keywords: Colored pseudo-triangulation; gem; dipole move; barycentric subdivision and
thickening; Pachner move; Gagliardi bisection; blob; flip; clean flip; gem move; permu-
tohedron.

Mathematical Subject Classification 2000: Primary 57Q05, 57M15; Secondary 57M12,
57M25, 05C10

1. Introduction

Gem theory, via its dual, the theory of colored pseudo-triangulations of
PL-manifolds, can be viewed as an intermediate theory between that of simplicial
triangulations, where the number of simplices is large and the pasting description is
trivial, and that of CW-complexes, where we have few simplices, but the pasting is
complex, making it unsuitable for a combinatorial description. In dimension three a
point in which gem theory differs from other descriptions of 3-manifolds is that the
set of minimal forms act as an attractor under a rich combinatorial simplification
theory. This makes 3-gems an adequate theory for the recognition and the compu-
tational classification of “small” 3-manifolds (see [10]). A very attractive aspect of
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3-dimensional gem theory is its direct connection with the theory of framed links. In
fact, it is possible to obtain a gem from a blink (blackboard framed link) by replac-
ing each crossing of the blink by a subgem with 12 vertices (see [7, Sec. 13.5]). This
result can be further improved by decreasing the number of vertices which replaces
each crossing from 12 to 8. Another basic result is a direct construction, in terms
of 3-gems, of the whole class of closed 3-manifolds in terms of “twistors”. A twistor
in a gem is a special kind of embedded solid torus induced by a special pair of
vertices [11].

Beyond n = 3, it has been an open problem to produce the barycentric sub-
division of a colored pseudo-triangulation of an n-manifold (dual of an n-gem) by
displaying a finite sequence of dipole moves. In this paper we exhibit such a sequence
for all cases n ≥ 1. As a consequence, we prove the enhanced theorem stated below
and proved as Proposition 5. A blob in an n-gem is a K-dipole with |K| = n. For a
non-negative α, let Gα be the gem obtained from gem G by creating α blobs at arbi-
trary edges of G. A flip at a pair of equally colored edges in a gem is the interchange
of the two edges by a new pair, having the same ends and color. We distinguish a
class of flips, named clean flips, which maintain the induced PL n-manifold. A blob
creation or cancellation is the creation/cancellation of the K-dipole and, therefore,
maintains the induced PL-manifold. Thus, if we want to test whether two n-gems
induce the same manifold, by creating blobs in the gem with less vertices, there
is no loss of generality in assuming that they have the same number of vertices.
We prove the following enhanced equivalence theorem: if G and H are gems with
the same number of vertices inducing the same n-manifold, then there is an integer
α(G, H) such that Gα and Hα are linked by a finite number of clean flips, where Gα

and Hα are respectively G and H with α = α(G, H) blobs put over arbitrary edges.
Consequently, it is enough to establish a bound for α(G, H) in order to produce an
algorithm that decides whether G and H induce or not the same n-manifold. Our
result has, as a corollary (providing an independent proof), a basic consequence of
the Ferri–Gagliardi theorem on crystallizations [4], stating that two n-gems induce
the same n-manifold if and only if they are linked by dipole moves.

2. Formal Definitions and the Weak Equivalence Theorem

For the basic notions on PL topology, we refer to [15]. An n-pseudogem G is a finite
(n + 1)-regular edge colored graph, with color set N = {0, 1, . . . , n}, such that at
each vertex the incident edges have distinct colors. The vertex set of G is denoted
by V (G). For ∅ ⊂ K ⊂ N , the K-graph of G is the subgraph of G induced by
the k-colored edges (or k-edges), with k ∈ K. A K-residue of G is any connected
component of the K-graph of G. If v ∈ V (G), the K-residue of G containing v is
denoted by vG

K , and v is said to represent the residue. A K-subgraph of G is the
union of a non-null set of K-residues of G. A K-residue of G and the K-graph of G

are extremal examples of K-subgraphs of G. Note that a K-subgraph of G is itself
a (|K| − 1)-gem whose set of colors is K ⊆ N .
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Each n-pseudogem G induces a topological space |G|, which is an n-dimensional
pseudo-manifold (see [5]). An n-gem is an n-pseudogem inducing an n-manifold.
This happens if and only if each J-residue induces a (|J | − 1)-sphere. All PL
n-manifolds admit gem descriptions. Henceforth we restrict the theory to gems,
even though some aspects generalize to pseudogems. A basic property of gems is
that an n PL-manifold is orientable if and only if any gem inducing it is a bipartite
graph [9].

A gem G is the 1-skeleton of the dual dT of a colored pseudo-triangulation T

of the manifold |G|, which is endowed with a coloring on its 0-simplices so that
the vertices of each simplex are differently colored. This coloring is induced by the
(n + 1)-coloring of the edges of G: a j-edge (i = 0, 1, . . . , n) of G intersects an
(n − 1)-simplex S of T in a single point. There are exactly two n-simplices, say S′

and S′′, containing S. Color the 0-simplex of S′ (respectively S′′) that is not in S

with the color j. On the other hand, the cellular complex dT can be obtained from
G in the following way: attach a disk to each K-residue, with |K| = 2; then attach
a 3-ball to each K-residue, with |K| = 3; and so on, until the attaching of an n-ball
to each K-residue, with |K| = n.

For ∅ ⊂ K ⊂ N , a K-dipole in an n-gem G is a K-residue containing only
two vertices, say x and y, such that xG

N\K �= yG
N\K . By duality, we can also talk

about dipoles in colored pseudo-triangulations. The cancellation of a K-dipole with
vertices x, y in a gem G is the following operation. Remove the edges and vertices
of the dipole and weld the pendant edges with the same color (there is a pair of
these for each color in N\K). The creation of a K-dipole is the inverse operation.
A dipole move is either a dipole creation or a dipole cancellation. By duality, dipole
moves also apply to colored pseudo-triangulations. Dipole moves on gems (as well
as in their duals) do not change the homeomorphism type of the induced manifolds.

In this paper we constructively obtain a sequence of dipole moves linking a
colored pseudo-triangulation of an n-manifold to its barycentric subdivision. This
result was previously unknown for dimensions n > 3. Together with Casali’s work
[1], it gives a simple and clearer proof of the sufficiency of the dipole moves for the
homeomorphism problem of PL n-manifolds. In fact, we define and work with gem
moves (shortly to be defined) which, in our context, are better to work with than
dipole moves. In doing so, we obtain our main result (Proposition 5), which is an
enhanced form of the Ferri–Gagliardi equivalence theorem [4].

The barycentric thickening of an n-gem G is the dual of the barycentric subdi-
vision of the colored pseudo-triangulation dual of G. Consider the following stream-
lined proof of the weak equivalence theorem for gems. The adjective weak refers to
the use of the barycentric thickenings and their inverses. If two gems G and H are
linked by a finite sequence of dipole moves, then we write G

∗←−−→H .

Proposition 1 (Weak equivalence theorem). Two gems G1 and G2 induce
the same n-manifold if and only if they are linked by barycentric thickenings, dipole
moves and inverse barycentric thickenings.
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Proof. In the diagram below, G�
i , G

��
i (i = 1, 2) are the first and the second

barycentric thickenings of Gi. The meaning of Hi � Hi+1 is that dHi+1, the dual of
Hi+1, is obtainable from dHi, the dual of Hi, by a single Pachner move. Even though
Hi might not be a gem, except for i = 0 and i = p, H�

i is a gem for i = 0, 1, . . . , p.

G1 → G�
1 = H0 � H1 � · · · � Hp = G�

2 ← G2

↓ ↓
G��

1 = H�
0

∗←−−→ H�
1

∗←−−→· · · ∗←−−→ H�
p = G��

2

Note that dH0 and dHp are simplicial complexes. So they induce the same
n-manifold if and only if they are linked by a finite sequence of Pachner moves
[16, 8]. Moreover, we claim that dHi and dHi+1, are linked by a Pachner move if and
only if H�

i and H�
i+1, the duals of the barycentric subdivisions of dHi and dHi+1 are

linked by a finite sequence of dipole moves. This result first appears in [1, Lemma
5] but, for completeness, we provide a simplified proof of this fact. Let dHi+1 be
obtained from dHi by a single k-bistellar move χ(A, B), with 0 ≤ k ≤ n, being
k = dimA and n − k = dimB. This implies, according to Pachner’s theory, that
they differ only in a subcomplex C, which is triangulated as the join complex ∂A∗B

in dHi and as the join complex A ∗ ∂B in dHi+1. Note that the boundary of C is
∂A∗∂B and remains invariant under this replacement. In order to prove that H�

i+1

can be obtained from H�
i by a finite number of dipole moves, it suffices to prove

that H�
i is dipole equivalent to H , where dH is obtained from dH�

i by replacing the
barycentric subdivision of C = A ∗ ∂B with the cone over the barycentric subdivi-
sion of ∂C. By interchanging A and B, as well as i and i+1, the same proof applies
and sufficiency is established.

Observe that C = A ∗ ∂B consists of n − k + 1 n-simplices σ1, . . . , σn−k+1. Let
sij be the common (n − 1)-face of σi and σj , for 1 ≤ i < j ≤ n − k + 1. Let
S1 be the (n − 1)-skeleton of C and let S′ = S1\∂C. Obviously, S′ is exactly the
union of the sij ’s previously defined. Note that the triangulation T1 of C� consists
of the union of the cones over the barycentric subdivision of the boundary of any
n-simplex of C (i.e. the components of C\S1). Now, let us consider the n-simplices
σ1 and σ2. In C�, the simplex s12 is subdivided into n! (n−1)-simplices σ′

1, . . . , σ
′
n!,

each being the face of one n-simplex in the barycentric subdivision of σ1, and the
face of one n-simplex in the barycentric subdivision of σ2. We can suppose, up to
reordering, that σ′

h has at least an (n−2)-face in common with σ′
1∪· · ·∪σ′

h−1, for any
h = 2, . . . , n!. By performing the sequence of n! dipole cancellations (all involving
color n), corresponding to the pairs of n-simplices with common face σ′

1, . . . , σ
′
n!

respectively, we obtain a new triangulation T2 of C�, which consists of the union
of the cones over the barycentric subdivision of the boundary of any component
of C\S2, where S2 = S1\s12. If k = n − 1, we have only one component, since
in this case S′ = s12, and the statement is obtained. If k < n − 1, then consider
the n-simplex σ3. The (n − 1)-simplex s13 (respectively, s23) is subdivided in n!
(n − 1)-simplices σ′′

1 , . . . , σ′′
n! (respectively, σ′′′

1 , . . . , σ′′′
n!), each being the face of one

n-simplex in the barycentric subdivision of σ3 and the face of one n-simplex in the
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subdivision of σ1 ∪ σ2 in the triangulation T2 of C�. Again we can suppose, up
to reordering, that σ′′

h (respectively, σ′′′
h ) has at least one (n − 2)-face in common

with σ′′
1 ∪ · · · ∪ σ′′

h−1 (respectively, σ′′′
1 ∪ · · · ∪ σ′′′

h−1), for any h = 2, . . . , n!. By
performing the sequence of 2n! dipole cancellations corresponding to these pairs of
n-simplices with common face σ′′

1 , . . . , σ′′
n!, σ

′′′
1 , . . . , σ′′′

n! respectively, we obtain a new
triangulation T3 of C�, which consists of the union of the cones over the barycentric
subdivision of the boundary of any component of C\S3, where S3 = S2\s13 ∪ s23.
If k = n − 2, we have only one component, since in this case S′ = s12 ∪ s13 ∪ s23,
and the statement is obtained. If k < n−2, we proceed by induction. At the end of
the process, consisting of n− k steps, we get the final triangulation of C�, which is
the cone over the barycentric subdivision of the boundary of C. This completes the
proof of the claim. Thus, G1 and G2 induce the same manifold if and only if G1 is
linked to G2 by two barycentric thickenings, a finite sequence of dipole moves and
two inverse barycentric thickenings.

A central objective of this paper is to show that the above theorem remains
true for all n if we leave out the barycentric thickenings and their inverses. This is
known for n ≤ 3, but the case n ≥ 4 is first proved here.

3. Blobs, Flips, Gem Moves and the Main Result

A z-blob is an (N\{z})-dipole. The cancellation of a z-blob with vertices u′, w′ pro-
duces a z-edge e ≡ (u, w). We say that the inverse operation is the creation of a blob
over the z-edge (u, w). See Fig. 1. After such a creation there appears a pair of new
z-edges (u, u′) and (v′, v). A blob is a z-blob for some z ∈ N . A blob move is either the
creation or the cancellation of a blob. In the pictures throughout the article, a thick
edge with a label J incident to a vertex v (represented by a small disk) means a set
of |J | edges, each one incident to v, colored by the elements of J . Thus, a thick edge
labelled J incident to a pair of vertices v and w means a set of |J | parallel edges, i.e.
all with the same ends v and w. Since the a blob at a z-edge has its color set N\{z},
the blob is completely specified by a circle over the edge. For this reason, we say that
the blob is over the edge. Throughout the pictures we show two kinds of vertices,
represented by black and white discs. Since we only work with gems, each n-residue
induces an (n−1)-sphere and so is bipartite. The black/white partition is the mani-
festation of the bipartiteness of the n-residue, which, in the required cases, contains
the partial gem being depicted. Thus we do not effect a flip like the one shown in
the third subgraph of Fig. 2, which destroys the bipartiteness of an n-residue.

Fig. 1. Blob moves: creation or cancellation of a blob.
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Fig. 2. Flips and a clean flip.

Let e and f be z-edges of an n-gem with ends (a, b) and (c, d) respectively. A
z-flip is the operation which replaces e and f , either by z-edges e′ with ends (a, c)
and f ′ with ends (b, d), or else by z-edges e′′ with ends (a, d) and f ′′ with ends
(b, c). So, given two z-edges e and f , there are two possibilities of z-flips. A flip is a
z-flip for a certain color z. There is a particular case of flip which is important for
us. Assume that e and f are z-edges which are incident respectively to the vertices
a and b of a K-dipole D, with z /∈ K. Consider the flip replacing e and f by e′

and f ′ respectively, so that the ends of e′ are a and b. Such a flip, which thickens
the dipole D to D ∪ {e′} is called a t-flip. The inverse operation, which slims the
dipole D∪{e′} to D, is called an s-flip. A clean flip is either a t-flip or an s-flip. We
shall see that, when applied to gems, a clean flip does not introduce singularities
in the associated n-manifolds, as is the case of an arbitrary flip. More strongly, by
Proposition 3, a clean flip leaves invariant the induced manifold.

Proposition 2 (Dipole thickening flips: t-flips). Let a, b, e, f, e′, f ′, D, K as
in the definition of a t-flip in a gem G, and let H be the gem after the t-flip. Then
D ∪ {e′} is a (K ∪ {z})-dipole in H.

Proof. Just note that aH
N\({z}∪K) �= bH

N\({z}∪K), since aG
N\K �= bG

N\K .

Proposition 3 (Dipole factorization of a clean flip). Let H be obtained from
an n-gem F by an s-flip. Then there exists an n-gem G, obtained from F by a single
dipole creation and producing H by a single dipole cancellation.

Proof. Let N = {z}∪J ∪K. We refer to Fig. 3, where aF
{z}∪K and aH

K are dipoles.
Since aH

K is a dipole, so is aG
K . Indeed, aH

{z}∪J and aG
{z}∪J are isomorphic, so aG

{z}∪J

and bG
{z}∪J are distinct. From F to G we have created the dipole bG

K and from G to
H we have cancelled the dipole bG

J (or the dipole cG
K∪{z}).

Note that a flip maintains the set of vertices of an n-gem. Since dipole moves in
n-gems maintain the induced n-manifold, according to Proposition 3, two n-gems
linked by a finite number of clean flips have precisely the same set of vertices and
induce the same n-manifold. If two n-gems G1 and G2 are linked by a single clean
flip we write G1�G2. The notation G1�rG2 means that we can go from G1 to G2
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Fig. 3. Dipole factorization of an s-flip.

by effecting exactly r clean flips, and G1�∗G2 means that the passage is effected
by a finite (but not specified) number of clean flips.

Proposition 4 (Blob rotation). Let the n-gems Gh and Gz differ only by the
positioning of blobs Bh and Bz. Assume that Bh is over an h-edge incident to a
vertex a, and that Bz is over the z-edge incident to a. Then G1�2G2.

Proof. Let b be the neighbor of a by color h and K = N\{h, z}. We refer to Fig. 4.
The s-flip which slims the dipole bK∪{z} by a z-edge, followed by the t-flip which
thickens the dipole bK by an h-edge, perform the rotation of the blob. Note that
the rotation maintains the set of vertices, namely {b, c}, of the blob.

Given a connected n-gem G and a non-negative integer α, let Gα be an n-gem
obtained from G by creating α blobs at arbitrary positions. An iterated application
of the previous result shows that, modulo clean flips, the specific positions of these
blobs are irrelevant.

Proposition 5 (Main result: enhanced equivalence theorem). If G and H

are n-gems inducing the same n-manifold, |V (G)| ≤ |V (H)|, then there is an integer
α = α(G, H) such that Gα′ �∗ Hα, where α′ = α + (|V (H)| − |V (G)|)/2.

In order to prove the result, we state in Proposition 9 another result which
implies it, in terms of gem moves. A gem move in a gem is either the cre-
ation/cancellation of a blob or a clean flip. If H is obtained from G by a single
blob creation (cancellation) we write G ↑ H (respectively, G ↓ H). If H is obtained

Fig. 4. Blob rotation.
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from G by a finite number of blob creations (cancellations) we write G ↑∗ H (respec-
tively, G ↓∗ H). The notation G(↑ � ↓)H means that H is obtained from G by a
single gem move. G(↑ � ↓)∗H means that H is obtained from G by a finite number
of gem moves. In view of Proposition 6, we prove our main results using gem moves,
which are easier to work with than dipole moves.

Proposition 6 (Gem moves × dipole moves). Let G and H be n-gems. Then

(G ∗←−−→H) ⇔ G(↑ � ↓)∗ H.

Proof. The creation and cancellation of a blob are dipole moves. A clean flip is
factorable as a pair of dipole moves, as shown in Proposition 3. Reciprocally, by
Proposition 2, the cancellation of a dipole can be accomplished by iterated t-flips
at the dipole, until a blob is created. This blob is then cancelled. Thus, a dipole
cancellation is factored as a finite sequence of gem-moves. The inverse sequence
creates the dipole.

Proposition 7 (Commuting blob moves and clean flips). Let G1, G2, and
G3 be n-gems. The following implications hold:

(G1 ↓ G2 � G3) ⇒ ∃ G′
2 | (G1 �∗ G′

2 ↓ G3),

(G1� G2 ↑ G3) ⇒ ∃ G′
2 | (G1 ↑ G′

2 �∗ G3).

Proof. In the first implication we can put (if necessary by clean flips) the blob
which needs to be cancelled over another edge, so as not to interfere with the clean
flip to be performed. Then we can perform the clean flip, obtaining G′

2, and cancel
the blob in its new location. This establishes the first implication. To prove the
second, we start by creating a blob over an edge which does not interfere with the
clean flip to be performed, thus defining G′

2. By clean flips, bring the created blob
back to its appropriate location. This establishes the second implication.

Proposition 8 (Blob conjugation). [G(↑ � ↓)∗H ] ⇔ ∃ G′, H ′ | [G ↑∗ G′ �∗ H ′

↓∗ H ].

Proof. The implication [G(↑ � ↓)∗H ] ⇐ ∃ G′, H ′ | [G ↑∗ G′ �∗ H ′ ↓∗ H ] is obvi-
ous. To prove the reverse implication, apply the second implication of Proposition
7 as many times as necessary, so as to get all the creations of blobs before any clean
flip. This defines G′. Next apply the first implication of Proposition 7 as many
times as necessary, so as to have all the blob cancellations after any clean flip. This
defines H ′. Cancellations of blobs yields H .

4. Equivalence Theorem, Bisections and Trisections

We are now in a position to state a result (the equivalence theorem in terms of gem
moves) which implies our main result (Proposition 5).
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Proposition 9 (Equivalence theorem). Two gems G and H induce the same
n-manifold if and only if they are linked by a finite number of gem moves, that is,
G (↑ � ↓)∗ H.

Equivalence theorem ⇒ main result. Assume that the equivalence theorem
holds, and that G and H are n-gems under the hypothesis of the main result,
Proposition 5. It follows that G(↑ � ↓)∗H . By Proposition 8, there exists two gems
G′ and H ′ such that G ↑∗ G′ �∗ G′′ ↓∗ H. This means that there exists an α(G, H)
as stated in the main result, thereby proving the implication.

Proposition 10 (Lemma on barycentric thickening). Any n-gem G and its
barycentric thickening G� are linked by a finite number of gem moves, that is,
G (↑ � ↓)∗ G�.

Lemma on barycentric thickening ⇒ equivalence theorem. Assume that the
lemma on barycentric thickening holds. Then, by Proposition 1, we have G

∗←−−→ G∗,
which, by Proposition 6, is equivalent to G (↑ � ↓)∗ G�.

Proof of the lemma on barycentric thickening. We show below, in the remain-
ing part of this section, that the passage G −→ G� can be factored as

G = G0 →t G1 →t G2 →t · · · →t Gq−1 →t Gq = G�,

where each step G�−1 →t G�, 0 ≤ � ≤ q − 1, is effected by an operation called
trisection, defined below. Along Secs. 6–8 we prove that G�−1 →t G� can be
accomplished by gem moves, namely, G�−1(↑ � ↓)∗ G�. Thus, up to the definition
of trisection, the proof that a barycentric thickening can be factored by trisec-
tions and the proof that a trisection is accomplished by gem moves establishes the
lemma.

Let pk be a k-colored 0-simplex of T , the dual of an n-gem G, and let j �= k

be another color. The pk centered j-bisection in T is the following operation, intro-
duced by Gagliardi in [6]: bisect each 1-simplex e, whose ends are pk, p′, where p′

is j-colored, by creating a new 0-simplex p′′ in the middle of e; re-color pk with j,
and color the new 0-simplices p′′ with k; bisect every n-simplex S = {pk, p′, . . . , w}
containing pk and p′, into S′ = {pk, p′′, . . . , w} and S′′ = {p′, p′′, . . . , w}. This opera-
tion clearly produces another colored pseudo-triangulation of the same n-manifold.
We denote by B(T, pk, j) the result of the pk-centered j-bisection of the colored
pseudo-triangulation T . Observe that, if Qk = {p1

k, p2
k, . . . , pu

k} is a set of k-colored
0-simplices of T , performing the pi

k-centered j-bisections in any order produces
the same colored pseudo-triangulation denoted by B(T, Qk, j): since there are no
n-simplices containing two of the pi

k’s, their respective bisections commute.
We need to interpret the bisection operation in dual terms. Let G be an n-gem

and k �= j be distinct colors in N . Also, let Fk be an (n − 1)-gem (possibly non-
connected) formed by the union of a given non-empty subset of (N\{k})-residues
of G. Trisect each j-edge e of Fk by creating two new vertices in the interior of e.
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If x and y are the vertices of e, denote by x′ and y′ the new vertices. Moreover,
link x to x′ by a j-edge, link x′ to y′ by a k-edge and link y′ to y by a j-edge.
Define I = N\{j, k} and, for each i ∈ I and each i-edge in Fk with ends x and z,
link x′ and z′ by an i-edge. The result of these trisections is an n-gem, denoted by
T (G, Fk, j). It is called the trisection of the j-edges in an (N\{k})-subgraph Fk, or
a trisection of G. In Fig. 5 we illustrate an important characteristic of the trisection:
it can be factored into two phases, namely, the creation of blobs over the j-edges of
Fk, producing G◦, and the correction of the I-edges to go from G◦ to T (G, Fk, j).

Proposition 11 (Bisection × trisection duality). Let T be a colored pseudo
triangulation and G its dual n-gem. Let Qk be a non-empty subset of the k-colored
0-simplices of T , and let Fk be the union of the (N\{k})-residues corresponding to
the 0-simplices in Qk, via duality. Then the dual of B(T, Qk, j) is T (G, Fk, j).

Proof. The proof follows from the geometric interpretation of the definitions. We
refer to Fig. 6, where I = N\{j, k} and I ′ = I\{i}. For our argument, i is an
arbitrary color in I.

The small black square labelled I ′ represents a colored (n − 2)-simplex with
color set I ′. Each vertex b of Fk, gets a copy, b′, in T (G, Fk, j), so that b, b′ are
the ends of a j-edge. Each i-edge of Fk with ends (b, a) is thickened to a square
(i, j)-bigon with vertices (b, b′, a′, a). Moreover, each j-edge of Fk with ends (b, c) is
trisected by a j-edge (b, b′), a k-edge (b′, c′) and another j-edge (c′, c). Since these
facts hold for each i ∈ I, the proof is complete.

Fig. 5. Factoring trisection by first creating blobs: G → G◦ → T (G, Fk, j).

Fig. 6. Bisection/trisection duality.
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Casali has proved in [1] that a specific sequence of (n + 1)n/2 bisections fac-
tors the barycentric subdivision of any n-dimensional pseudo-triangulation. The
pseudo-triangulation, as well as some subsets of i-colored 0-simplices arising in this
factorization, are important to us. So we formalize the method of [1] as an algorithm
to provide an adequate terminology, in which the pseudo-triangulations that arise
from successive bisections are denoted by T j

i with 0 ≤ j ≤ n and 0 ≤ i ≤ n− j +1.
The 0-skeleton of a pseudo-triangulation T is denoted by S0(T ). For 0 ≤ j ≤ n− 1,
0 ≤ i ≤ n − j − 1 the subset Qj

i ⊂ S0(T
j
i ) is formed by the i-colored 0-simplices

of T j
i , which are 0-simplices of the original triangulation T . This subset plays an

important role in the primal-dual algorithm (Proposition 13). Note that the algo-
rithm depends on the ordering of the colors, which we assume to be the usual one
0, 1, . . . , n. Variations in this order produce (non-color) isomorphic T �’s.

Proposition 12 (Casali’s algorithm to factor T → T � by bisections). The
following algorithmproduces the barycentric subdivisonT � of a pseudo triangulationT :

1. T 0
0 ← T ;

2. for j from 0 to n − 1 do
3. for i from 0 to n − j − 1 do
4. Qj

i ← {p ∈ S0(T ) ∩ S0(T
j
i ) | color(p) = i + 1 in T j

i };
5. T j

i+1 ← B(T j
i , Qj

i , i);
6. T j+1

0 ← T j
n−j+1;

7. T � ← T n
0 .

Fig. 7. Snapshot of a 3D-Barycentric Subdivison by (i, i − 1)-bisections.
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Proof. See [1].

The final pseudo-triangulation T � coincides with the barycentric subdivision
of T . In Fig. 7 we present a snapshot of this algorithm in dimension 3 to obtain
the barycentric subdivision T � of a colored pseudo-triangulation T . The 0-simplices
of T � are naturally partitioned into n + 1 classes: v ∈ V (T �) is either an original
0-simplex of T or is in the interior of an original i-simplex of T , i = 1, 2, . . . , n.
Such a 0-simplex is said to be a dimension i representing 0-simplex of T �. We
mark each original 0-simplex, with a tick in its color label. Each time a new
0-simplex is created, its color and its representing dimension are the same. Only
ticked 0-simplices (original 0-simplices) are used as center of a bisection. Each
time a 0-simplex of color i is used as center, its color decreases by 1 and it
remains ticked. Such a 0-simplex is used i times as center and so its final color
is 0. In the figure we display a snapshot of the process for n = 3 focusing in
a tetrahedron Q, and choosing, after each bisection, one of the two tetrahedra
to focus. Of course, the method operates in parallel in all tetrahedra. At the
end of the six bisections we arrive display two tetrahedra Q1 and Q2 of T �,
the pair being two of the 24 tetrahedra in which Q is subdivided in its barycen-
tric subdivision. The color of each 0-simplex of T � coincides with its representing
dimension.

To prove our main results, it is essential to use gems instead of pseudo-
triangulations. Therefore we rewrite the previous algorithm using gems and their
dual colored pseudo-triangulations, emphasizing the use of trisections instead of
bisections. The notation B

d← A means that B is obtained from A by geometrical
duality. The colored pseudo-triangulations T j

i are carried along in the primal-dual
algorithm, formalized in Proposition 13, only to produce the (N\{i})-subgraph Ej

i

dual of Qj
i . The reason why the algorithm is not entirely in terms of gems is because

it is impossible to define adequate Ej

i
without duality.

Proposition 13 (Primal-dual algorithm to factor F → F �). The following
algorithm produces the barycentric thickening F � of an n-gem F by trisections:

1. F 0
0 ← F ; T

d← F ; T 0
0

d← F 0
0 ;

2. for j from 0 to n − 1 do
3. for i from 0 to n − j − 1 do
4. Qj

i ← {p ∈ S0(T ) ∩ S0(T
j
i ) | color(p) = i + 1 in T j

i };
5. Ej

i

d← Qj
i ; (gem Ej

i
is an (N\{i})-subgraph of F j

i );

6. F j
i+1 ← T (F j

i , Ej

i
, i); T j

i+1
d← F j

i+1;

7. F j+1
0 ← F j

n−j+1; T j+1
0

d← F j+1
0 ;

8. F � ← Fn
0 .

Proof. The proof follows, by duality, from Proposition 12.
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Fig. 8. An example of the primal-dual algorithm to factor the barycentric thickening.

In Fig. 8 we present an application of the primal-dual algorithm applied to
the complete graph K4 embedded into the real projective plane RP

2. This simple
example illustrates the fact that the theory applies to non-orientable manifolds
as well.

5. Properties of Trisections

As we have mentioned, the operation of trisection G �→ T (G, Fk , z) can be factored
into two phases, namely, creation of blobs in the z-edges of Fk , producing G◦, and
correction of the I-edges to go from G◦ to T (G, Fk, z), replacing j by z (see Fig. 5).
Note that this I-correction phase can be performed by a finite number of slimming
flips. In this context, see Proposition 16.

After the trisection, each I-residue R contained in Fk is duplicated and
becomes an (I ∪ {z})-prism with bases isomorphic to R in T (G, Fk , z). Note that
V (T (G, Fk, z)) ⊃ V (G).

Proposition 14 (Correspondence Fk ↔ F ′
{z}). Let G be an n-gem, I ∪ {k, z}

be a partition of N, Fk be an (I ∪ {z})-subgraph of G and H = T (G, Fk , z). The
vertices of H which are not vertices of G (primed vertices) are the vertices of an
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(I ∪{k})-subgraph of H denoted by F ′
{z}. An (I ∪{k})-residue R′ (a component) of

F ′
{z} whose vertex set is {x′

1, x
′
2, . . . , x

′
u}, corresponds to an original (I∪{z})-residue

R (a component) of Fk with vertex set {x1, x2, . . . , xu}. Moreover, by replacing each
k-edge of this residue by a z-edge we get an isomorphic copy of R.

Proof. Straightforward consequence of the definition of T (G, Fk , z).

For gems with a color partition I∪J∪{k, z}, the operation of trisection interacts
with dipoles in a way that merits further study. We need the following proposition
in the proof of the main lemma, Proposition 17.

Proposition 15 (Dipoles and trisection). Let G be an n-gem, I ∪ J ∪ {k, z}
be a partition of N, Fk be an (I ∪ J ∪ {z})-subgraph of G and H = T (G, Fk , z). (1)
if aG

I∪{k} is a dipole, then aH
I∪{k} is a dipole; (2) if aG

I∪{k,z} is a dipole, then aH
I∪{k}

and (a′)H
I∪{k} are dipoles.

Proof. Under the hypothesis of (1), assume that aH
I∪{k} is not a dipole. Take a

minimal path π, linking a to b in H and having only (J ∪{z})-edges. We claim that
π uses z-edges, otherwise π links a to b in H having only J-edges. Such a path is
also a path in G, which contradicts the hypothesis of (1). So the concatenated path
π = π1 ◦ u{z} ◦ π′

2 ◦ w{z} ◦ π3, with π1 disjoint from F ′
{z} and π′

2 links u′ to w′ in a
component R′ of F ′

{z} by J-edges. A J-path in R linking u to w corresponds to π′
2.

It follows that π1 ◦ π2 ◦ π3 links a to b in H by (J ∪ {z})-edges, contradicting the
minimality of π. The proof of (1) is complete.

Under the hypothesis of (2), assume that aH
I∪{k} is not a dipole. Take a minimal

(J ∪ {z})-path π linking a to b in H . We claim that π uses z-edges, otherwise π is
a J-path linking a to b in H . Such a path is also a path in G, which contradicts
the fact that aG

I∪{k,z} is a dipole. So, π = π1 ◦ u{z} ◦ π′
2 ◦w{z} ◦ π3, with π1 disjoint

Fig. 9. Dipoles and trisection.
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from F ′
{z} and π′

2 links u′ to w′ in a component R′ of F ′
{z} by J-edges. A J-path in

R linking u to w corresponds to π′
2. It follows that π1 ◦ π2 ◦ π3 links a to b in H by

(J ∪ {z})-edges, contradicting the minimality of π. Then aH
I∪{k} is a dipole. If π′ is

a (J ∪ {z})-path which links a′ to b′ in H , then a{z} ◦ π′ ◦ b{z} is a (J ∪ {z})-path
in H linking a to b. Since aH

I∪{k} is a dipole, such π′ does not exist and (a′)H
I∪{k} is

a dipole, proving (2).

If we do not care about maintaining the induced manifold while going from G to
T (G, Fk, z), then it is easy to accomplish the passage. A fake s-flip is the slimming
of a dipole which produces a non-dipole.

Proposition 16 (Blobs and fake s-flips). The passage G → T (G, Fk , z) can be
accomplished by means of blob creations followed by (possibly fake) s-flips.

Proof. Start by creating a blob at each z-edge of Fk , producing an n-gem G◦ = G0.
Label the new vertices with a prime, such that v′ is linked to v by a z-edge. Let � ← 0
and iterate the following procedure. Consider in G� a vertex v′ in one of the created
blobs and a color c, where c ∈ I = N\{z, k}. Suppose that the c-neighbor of v′ is u′

and that v has, as c-neighbor, the vertex w. If u �= w, we say that v′ is c-wrong in
G�. Otherwise, we say that v′ is c-correct. Assume that v′ is c-wrong. Let x′ be the
c-neighbor of w′. The (v′, c)-correcting flip replaces the c-edges (u′, v′) and (w′, x′)
by the c-edges (v′, w′) and (u′, x′), and defines G�+1. Note that v′ and w′ are both
c-wrong in G� and v′ is c-correct in G�+1. Thus the total number of c-wrong vertices
is smaller in G�+1 than in G�. Make � ← � + 1 and repeat until there are no c-wrong
vertices. The final G� is clearly, by definition, T (G, Fk, z).

If, in the above proof, at the (v′, c)-correcting flip, we could make sure that the
set of edges between u′ and v′ forms a dipole, then this flip would be a genuine
dipole slimming flip (an s-flip), and we would have completed the factorization
G → T (G, Fk, z) by gem moves. However, that set of edges is not in general a dipole,
and we just have a fake s-flip. A serious problem with the construction of the proof
of Proposition 16 is because a fake s-flip, applied to a gem, produces in general a
pseudogem (or possibly a gem of a different manifold) and so it is impossible to
factor these flips by gem moves. We have seen in Proposition 3, however, that a
clean flip factors into a pair of dipole moves. In view of Proposition 3, to factor
G → T (G, Fk, z) by gem moves it would be sufficient to perform the construction
of Proposition 16 using only clean flips. However, this is impossible for arbitrary
gems G’s and (N\{k})-subgraphs Fk’s. In the rest of this paper we show that, in
a very particular class of gems and (N\{k})-subgraphs, gem moves are sufficient
to perform the correcting flips. Moreover, this sufficiency, in this restricted class,
implies that G → T (G, Fk, z) is factorable by gem moves in general.

In dimension 2 the above algorithm, with an appropriate ordering of the
corrections, produces only true s-flips. This could be used to establish the basis
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of the inductive proof of the main lemma. We do not use it because we will take the
case n = 1 as the basis. There are examples showing that, for dimensions n ≥ 3, no
ordering of corrections is adequate. However, in the final section we establish the
existence of such an adequate ordering for an arbitrary dimension n, assuming the
hypothesis that Fk is itself the barycentric thickening of some (n−1)-gem. Finding
this hypothesis was the key step in achieving the proof of the main lemma.

6. The Main Lemma

A dipole D of some n-gem is said to be associated to a gem move if it is the blob
(an n-dipole) which is being cancelled or created, or if it is the dipole which is
being thickened or slimmed. Consider a single gem move µ, yielding n-gem G′′

from gem G′, having D as its associated dipole. Assume that G is a gem satisfying
V (G) ⊂ V (G′) ∩ V (G′′). If V (D) ∩ V (G) = ∅, then µ is a G-special gem move.

Proposition 17 (The main lemma). Let G be an n-gem and H = T (G, Fk, z),
where Fk is an (N\{k})-residue of G. Then there is a sequence of G-special gem
moves linking G to H.

Proof. The proof is by induction on the dimension n of the manifold induced
by G. For n = 1, the trisection is accomplished by blob creations on the z-edges.
No correction phase is needed.

To simplify the notation in proving the induction step, let us relabel the colors,
so that k = n and z = n− 1. Also denote Fk by F . However, in our next use of the
inductive hypothesis, we are allowed to assume that the proposition is true for the
(n − 1)-case with arbitrary colors k and z.

By using the factorization of Proposition 13 and the inductive hypothesis, there
exists a sequence of gems from F to its barycentric thickening F �, namely, σF =
(F = F0, F1, F2, . . . , Fp = F �) so that Fi is obtained from Fi−1 by a single F -special
gem move. Note that σF is obtained by refining the sequence (F j

i ) defined by the
algorithm of Proposition 13. This refinement is allowed by the inductive hypothesis.
Starting with G0 = G we construct a sequence σG = (G = G0, G1, G2, . . . , Gp = G):
each time that we create or cancel a blob in some F� we create or cancel a blob in
G� with an extra n-edge. Since the moves in σF are F -special, a dipole slimming or
thickening in F� is also a dipole (the same dipole with an extra n-edge) slimming
or thickening in G�. So σG is well defined and it follows that we can go from G to G

by G-special gem moves. Observe that F� is an (N\{n})-residue of G�. Define H� =
T (G�, F�, n − 1), 0 ≤ � ≤ p, and consider σH = (H = H0, H1, H2, . . . , Hp = H).
We claim that we can go from H�−1 to H� by a sequence of G-special gem moves.
We also claim that we can go from G to H by means of a finite sequence of gem
moves, which do not involve the vertices of G. Up to these two claims, the proof of
the main lemma is established. We prove the first of these claims here. The proof
of the second one is given in the last section of the paper.
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First suppose that G� is obtained from G�−1 by a clean flip. Let {G′, G′′} =
{G�−1, G�} so that G′′ is obtained from G′ by thickening a dipole D. As before, D

contains an n-edge. We have three cases:

(1) The color h of the edges which are being flipped is n − 1;
(2) h �= n − 1 and D has an (n − 1)-edge;
(3) h �= n − 1 and D has no (n − 1)-edge.

Case 1 is dealt with in Fig. 10. Step H ′Fig.10−−−→H ′
1: since aG′

{n}∪I is a dipole, so is

aH′
{n}∪I by part (1) of Proposition 15. Thicken the latter to obtain dipole a

H′
1

K∪I∪{n−1}.

Fig. 10. Linking (z, Fk)-trisections of G′, G′′ differing by a clean flip: case 1.

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

6.
15

:1
00

1-
10

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 F

E
D

E
R

A
L

 D
E

 P
E

R
N

A
M

B
U

C
O

 o
n 

06
/1

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



November 8, 2006 17:21 WSPC/134-JKTR 00490

1018 S. Lins & M. Mulazzani

Step H ′
1
Fig.10−−−→H ′

2: Proposition 14 implies that (a′)H′
1

I∪{n−1} is a dipole: (a′)H′
1

{n}∪J and

(b′)H′
1

{n}∪J are distinct because aG′
{n−1}∪J and bG′

{n−1}∪J are too. Perform J-thickening

of the dipole (a′)H′
1

I∪{n−1}. Step H ′
2
Fig.10−−−→H ′

3: note that (b′)H′
2

{n} is a dipole. Do the
(I ∪ J)-thickening of this dipole, producing an (n − 1)-blob at H ′

3. Alternatively,
the same result can be obtained by rotating the n-blob (b′)H′

2
{n} to the (n − 1)-

edge incident to d′. Step H ′
3
Fig.10−−−→H ′

4: transfer the blob along the path pj,n−1. Note
that J �= ∅, otherwise G′′ would have one more component than G′, which is
not possible via a gem move. The path pj,n−1 is a path linking d to b, which
alternates (n− 1)-edges and j-edges, for a certain j ∈ J . Step H ′′Fig.10−−−→H ′

4: by part
(2) of Proposition 15, (a′)H′′

{n}∪I is a dipole, because aG′′
I∪{n−1,n} is a dipole. The

J-thickening of (a′)H′′
{n}∪I yields H ′

4. Note that, except maybe for c and d, all the
vertices appearing in Fig. 10 are not in G. Therefore, all the gem moves performed
to go from H ′ to H ′′ are G-special. In particular, the moves which rotate (many
times) the blob with vertices b′ and d′ are G-special. This establishes case 1.

Case 2 is dealt with in Fig. 11. Step H ′Fig.11−−−→H ′
1: By Proposition 15, part (2)

with the J of that proposition replaced by the current J ∪ {h}, we obtain that

(a′)H′
I∪{n} is a dipole. Thicken the latter by {h}, obtaining the dipole a

H′
1

K∪I∪{h}.

Step H ′
1
Fig.11−−−→H ′

2: apply J-thickening in the latter dipole, yielding an (n − 1)-blob.
Step H ′

2
Fig.11−−−→H ′

3: apply two rotations to this blob. Step H ′
3
Fig.11−−−→H ′

4: Note that
a

H′
3

{h}∪J = aG′
{h}∪J �= bG′

{h}∪J = b
H′

3
{h}∪J . Thus a

H′
3

I∪K∪{n−1} is a dipole. Perform the
{h}-thickening of this dipole, followed by the transfer of the (n−1)-blob at d along
the phj to the (n − 1)-edge at a. Note that J �= ∅, otherwise G′′ would have one
more component than G′, which is not possible via a gem move. The path phj is a
path linking d to b, which alternates j-edges and h-edges, for a certain j ∈ J . Step
H ′′Fig.11−−−→H ′

4: by part (2) of Proposition 15 with I ∪ {h} in place of I, (a′)H′′
I∪{n,h} is

a dipole, because aG′′
I∪{h,n−1,n} is a dipole. Do the J-thickening of this dipole to get

H ′
4. Note that, as in the previous case, except maybe for c and d, all the vertices

appearing in Fig. 11 are not in G. Therefore, all the gem moves performed to go
from H ′ to H ′′ are G-special. In particular the moves which rotates (many times)
the blob with vertices a′ and b′ are G-special. The proof of case 2 is complete.

For the proof of case 3 we use Fig. 12. Step H ′Fig.12−−−→H ′
1: by Proposition 15, part

(1) with J of that proposition replaced by the current J∪{h}, we obtain that aH′
I∪{n}

is a dipole. Do the {h, n− 1}-thickening of the latter to obtain dipole a
H′

1
I∪{h,n−1,n}.

Step H ′
1
Fig.12−−−→H ′

2: by Proposition 14 (a′)H′
1

I∪{n−1} is a dipole. Do the {h}-thickening of
this dipole. Step H ′′Fig.12−−−→H ′

2: by part (1) of Proposition 15, with the current I∪{h}
in place of I, aH′′

I∪{h,n} is a dipole. The {n − 1}-thickening of this dipole yields H ′
2.

Observe that the only vertices which might be in G are c and d. Therefore, all the
gem moves performed from H ′ to H ′′ are G-special, establishing case 3.
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Fig. 11. Linking (n − 1, Fk)-trisections of G′, G′′ differing by a clean flip: case 2.

Suppose now that G� is obtained from G�−1 by a G-special blob cancellation
or creation, that {G′, G′′} = {G�−1, G�} and that G′ contains the blob D to be
cancelled. Assume first that D is over an h-edge, h �= n − 1. By the definition of
G′ from F ′, D contains an n-edge and so h /∈ {n − 1, n}. We refer to Fig. 13. To
go from H ′ to H ′′ we have thickened the dipole eH′

I∪{n} using the (n − 1)-colored
edge. Since e, f are not vertices in V (G) it follows that this thickening is G-special.
After that, two h-blobs arise and their cancelling produces H ′′. These moves are
G-special, because {e, f, e′, f ′} ∩ V (G) = ∅. Next, consider the case in which the
blob D is over an (n− 1)-edge. The creation of this (n− 1)-blob can be factored as
the creation of an h-blob, followed by a pair (s-flip,t-flip) performing the rotation
of the h-blob into an (n− 1)-blob, as explained in Proposition 4. Each one of these
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Fig. 12. Linking (n − 1, Fk)-trisections of G′, G′′ differing by a clean flip: case 3.

Fig. 13. Linking, by gem moves, (z, Fk)-trisections of gems differing by an h-blob, h �= n.
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3 special G-moves were treated in previous cases. Thus, we can go from G to H by
a finite sequence of G-special gem moves.

To finish the proof of the main lemma we still need to establish that G is linked
to H by a finite sequence of G-special gem moves.

We write G′ (↑ � ↓)∗G G′′, if V (G′) ∩ V (G′′) ⊇ V (G) and G′′ is obtained from
G′ by a finite sequence of G-special gem moves. In Sec. 8 we conclude the proof of
the main lemma by establishing that G (↑ � ↓)∗G H. In the next section we prepare
the ground for this final step.

7. The Permutohedron

The tools to define the ingredients used in the proof that G (↑ � ↓)∗GH are the
properties of a convex (n − 1)-polytope P n−1 embedded into R

n−1. For a positive
integer q, the q-permutohedron, see [2], is a (q−1)-gem with color set {0, 1, . . . , q−1}
inducing the sphere Sq−1, defined as follows: its vertex set is the set of the (q + 1)!
permutations of {0, 1, . . . , q}. Given two vertices π, and π′ there is an (q − 1 − i)-
colored edge linking them if π′ is obtained from π by interchanging its ith and
(i + 1)th symbols, i = 0, 1, . . . , q − 1. This accounts for all the q(q+1)!

2 edges of
P q, concluding its definition. A simple structural property of the permutohedron
follows:

Proposition 18 (Bi-colored polygons of size 4 and 6 in the permutohe-
dron). For q ≥ 1 and 0 ≤ i < j ≤ q, each {i, j}-residue in P q has either 4 or 6
vertices according to j − i > 1 or j − i = 1.

Proof. From the definition of the i- and j-edges of P n−2, if j > i+1, the transposi-
tions (i, i+1) and (j, j +1) commute, forming an orbit with 4 elements. If j = i+1,
the orbit has 6 elements.

Our next target is to define an ε-canonical embedding of the q-permutohedron,
for q ≥ 1, as a subset P q

ε ⊆ R
q, so that each residue of P q embeds as the 1-skeleton

of a convex polytope contained in P q
ε .

First we need to embed the regular q-simplex into R
q. Denote by T q the regular

q-simplex whose 1-faces have length 1 embedded in R
q. We want to assign fixed well

defined canonical coordinates for the 0-faces (the vertices) T q. Essentially, to make
computations easier, in the canonical coordinates, we make the barycenter of T q

coincide with the origin of R
q. The construction is by induction. The coordinates of

the vertices u1,0, u1,1 of T 1 in R
1 are respectively −1/2 and 1/2. Having defined the

canonical coordinates of the vertices uq−1,0, uq−1,1, . . . , uq−1,q−1 of T q−1 in R
q−1,

the coordinates of the vertices of T q in R
q are defined as follows. Denote by hq the

height of the regular q-simplex, which is hq =
√

1 − ‖uq−1,0‖2. Let u′
q,q of R

q be
(0, 0, . . . , 0, hn). This point, together with the vertices of T q−1, to whose coordinates
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we append an extra 0, define a regular q-simplex (T ′)q. To make it canonical we
just need to apply the translation by tq = (0, 0, . . . , 0,−hq/q). Indeed, the q-th
coordinate of the barycenter of (T ′)q is hq/q. After the translation on (T )′q by tq,
which defines T q, the barycenter of the latter is the origin of R

q, as desired. In
this way, define uq,j = (uq−1,j , 0) + tq, 1 ≤ j ≤ q − 1, and uq,q = u′

q,q + tq. The
definition of the canonical coordinates of T q is concluded. These coordinates are
used to embed the permutohedron P q into R

q, as follows.
The parameter ε is a real number 0 < ε ≤ 1/q. The definition is inductive.

P 1
ε = T 1. Suppose P q−1

ε ⊆ R
q−1 is defined. Let P q−1

ε,0 ⊆ R
q be constructed from

P q−1
ε ⊆ R

q−1 as follows. Append an extra 0 to the coordinates of the vertices of
P q−1

ε to consider a subset of R
q. Let Mq = ε · P q−1

ε + uq,q, where uq,q is the qth
vertex of T q. Thus, Mq is an ε-scaled and uq,q-translated copy of P q−1

ε . The label
π ∈ Sq of a vertex of P q−1

ε corresponds to the label π′ ∈ Sq+1 of the corresponding
vertex of Mq, obtained from π by prefixing q to it. From Mq we obtain Mj, 0 ≤
j ≤ q − 1, as its image under the reflection ρq,j along the hyperplane orthogonal
to the line linking the barycenter of T q to the barycenter of its (q − 2)-dimensional
face, induced by all the vertices of T q except uq,q and uq,j . Note that reflection ρq,j

interchanges these two vertices. We label the vertex of Mj corresponding to a vertex
π of Mq by interchanging the symbols q and j. In consequence, each vertex π of Mj

satisfies π(0) = j. All vertices of P q have been positioned in R
q. The ε-canonical

embedding P q
ε ⊆ R

q of P q is

P q
ε = conv.hull

(⋃
Mj | 0 ≤ j ≤ q

)
, (1)

where conv.hull(S) denotes the convex hull of a set S ⊆ R
q [17]. See Fig. 14 for an

illustration of the case q = 2 of this construction. We emphasize that P q denotes an
abstract (not embedded) (q− 1)-gem while P q

ε denotes the same gem ε-canonically
embedded into R

q. The embedding depends only on the parameter ε ∈ (0, 1/q]. Note

Fig. 14. Construction of P 2
ε from T 2 and P 1: canonical embedding for P 2 in R

2.
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that limε→0 P q
ε = T q. Moreover, from the symmetry of the recursive construction,

any two J-residues of P q
ε are isometric, for arbitrary J ⊆ {0, 1, . . . , q}.

Given a q-gem F , we show how to obtain its barycentric thickening F � com-
binatorially from F and |V (F )| q-permutohedra, q ≥ 1. Consider a collection of
disjoint q-permutohedra in 1-1 correspondence with the vertices of F , so that a
vertex v corresponds to P q

v (here the subscript v has nothing to do with ε in the
embedding P q

ε ). The collection of permutohedra accounts for the ({0, 1, . . . , q−1})-
subgraph of a q-gem F �. To conclude the definition of F � it is enough to define the
q-colored edges. If v and w are linked in F by an i-edge, i ∈ {0, 1, . . . , q}, for each
{0, 1, . . . , q}-permutation π such that π(0) = i, link the vertex π of P q

v to the vertex
π of P q

w by a q-colored edge [(v, π), (w, π)]. The secondary color of this q-edge is i,
the original color of (v, w) in F . Let F � be the q-gem obtained by considering the
collection of q-permutohedra linked by the q-edges.

An illustration of this construction is given in Fig. 15, for the case where F is
a 2-gem, the 3-edge colored 1-skeleton of a cube. As a matter of fact, in general,
F � coincides with the barycentric thickening of F , as we now prove.

Proposition 19 (Equality F � = F �). Consider the q-gem F �, q ≥ 1, just defined.
Then F � = F �.

Proof. The combinatorial description of the barycentric thickening F � comes from
duality and is the following. The vertices of F � are the sequences (v, π), where v is a
vertex of F and π is a permutation of the color set {0, 1, . . . , q}. We interpret (v, π)
as the ascending chain of residues: (v∅, v{π(0)}, v{π(0),π(1)}, . . . , v{π(0),π(1)...,π(q−1)}).
Two vertices represented by these sequences are linked by an edge of color (q− i) if
the sequences differ only in the i-th coordinate, i = 0, 1, . . . , q. This completes the
definition of the q-gem F �. In this way, there is a 1-1 correspondence between the
vertices of F � and of F �.

Suppose that v is linked to w by a q-edge in F . The diagram below shows that
the 1-1 correspondence between the vertex sets preserves color q. This is because
the two sequences on the right differ only in their first entries, namely, v∅ �= w∅. All
the subsequent entries are equal, because vπ(0) = wπ(0).

(v, π(0), π(1), . . . , π(q)) ↔ (v∅, v{π(0)}, v{π(0)π(1)}, . . . , v{π(0)π(1)...π(q−1)})
� color q � color q

(w, π(0), π(1), . . . , π(q)) ↔ (w∅, w{π(0)}, w{π(0)π(1)}, . . . , w{π(0)π(1)...π(q−1)})

To prove that color q − i, 1 ≤ i ≤ q, is also preserved by the correspondence,
consider the diagram below.

(v, . . . , π(i), π(i + 1), . . .) ↔ (v∅, . . . , v{π(0)...π(i)}, v{π(0)...π(i)π(i+1)}, . . .)
� color q − i � color q − i

(v, . . . , π(i + 1), π(i), . . .) ↔ (v∅, . . . , v{π(0)...π(i+1)}, v{π(0)...π(i+1)π(i)}, . . .)
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Fig. 15. The construction of F � = F � from F and 2-permutohedra.

Just note that the interchange of π(i) and π(i + 1) on the left sequences corre-
sponds to a difference on the i-entry, 1 ≤ i ≤ q, of the sequences on the right. Thus,
color q − i is preserved under the 1-1 correspondence of the vertices of F � and F �.
So we can conclude that F � = F �.

Let J = {j0, j1, . . . , j�} with j0 < j1 < · · · < j�. Define C
{j0}
π as the edge (π, πj0 )

of P q
ε . Inductively define, for � ≥ 1,

CJ
π = conv.hull


CJ\{j�}

π ∪ CJ\{j�}
πj�

∪


 ⋃

0≤i≤�−1

CJ\{j�}
πjij�





 , (2)

where πj means the j-neighbor of the vertex π in P q
ε , and πjij�

means (πji )j�
. We

also define C∅
π as the vertex π of P q

ε . This extreme situation accounts for the case
� = −1 in the following proposition.

Proposition 20 (Residues RJ
π embedded as convex subpolytopes ⊆ P q

ε ).
Let J ⊆ {0, 1, . . . , q} and π ∈ V (P q

ε ). Then CJ
π ⊆ P q

ε is an (�+1)-dimensional con-
vex polytope corresponding to the J-residue RJ

π of P q
ε which contains the vertex π.
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Fig. 16. The convex polytope CJ
π associated to RJ

π , the J-residue of P q
ε containing π.

This correspondence, in particular, implies that RJ
π and CJ

π have the same vertices
and the same edges.

Proof. The proof is by induction on |J |. The result is clear if |J | ≤ 1. Assume it is
true for J ′ with |J ′| < |J |. From (2), it is enough to show that the j�-edge (γ, γj�

)
with γ ∈ V (CJ

π ) is in the boundary of CJ
π , whereas every line from γ to γ′ �= γj�

,
with γ and γ′ vertices in distinct convex sets of the (� + 2)-convex set union in (2),
has each one of its interior points in the interior of CJ

π . This facts follows from the
geometry of the definitions. In Fig. 16 we depict a cross section of the situation for
γ = π. The case of a generic γ is equivalent up to symmetry.

Let P0 be a ε-scaled copy of P n−1
ε , that is, P0 = ε · Pn−1

ε and let P�, 1 ≤ � ≤
|V (F )|, be a copy of P0 by a rigid motion in R

n−1. Also, let H�, with 1 ≤ � ≤ |V (F )|,
be a hyperplane in R

n−1, so that P� ∩H� = ∅ and the distance to H� of the vertices
of P� are all distinct; we say that H� is distinctive for P�. In this case H� induces
an orientation for the edges of P�, from its tail, the vertex at the longest distance
to H� to its head, the vertex at the shortest distance. Thus we consider P� as a
directed graph. H� also induces an ordering (e�1, . . . , e�r, . . . , e�p), p = (n− 1)n!/2,
of E(P�): edge e′ = v′w′ comes before edge e′′ = v′′w′′ if dist(v′,H�) < dist(v′′,H�)
or dist(v′,H�) = dist(v′′,H�) and dist(w′,H�) < dist(w′′,H�). Recall that, in a
direct graph, a source is a vertex with all the incident edges directed away from it.
A sink is a vertex with all the incident edges directed towards it.

Proposition 21 (Single source and single sink on RJ
π). Let H�, 1≤ �≤ |V (F )|,

be distinctive for hyperplanes P�. Let also J ⊆ {0, 1, . . . , n−1} and RJ
π be a J-residue

of Pn−1
ε . Then there is a single source and a single sink in RJ

π .

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

6.
15

:1
00

1-
10

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 F

E
D

E
R

A
L

 D
E

 P
E

R
N

A
M

B
U

C
O

 o
n 

06
/1

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



November 8, 2006 17:21 WSPC/134-JKTR 00490

1026 S. Lins & M. Mulazzani

Proof. It follows from the convexity of the polytope CJ
π corresponding to RJ

π , of
Proposition 20.

The next proposition is the key to the applicability of the permutohedron to
our theory, as seen in Proposition 23.

Proposition 22 (Key property). Let the distances of the vertices of P� to a
hyperplane H� all be distinct. Denote by (e�1 . . . e�r . . . e�s . . . e�p) the H�-sequence
of E(P�) and by (v�1 . . . v�r . . . v�s . . . v�p) the sequence of their heads, according to
the H�-orientation. Define

J�s = {e�r | r ≤ s, head(e�r) = v�s}, J�s = {color(e�r) | e�r ∈ J�s}.

Denote by R�s the residue (v�s)P�

J�s
. Then, for 1 ≤ s ≤ p, the edge e�s is the last edge

of the residue R�s, that is, {e�1 . . . e�r . . . e�s} ∩ E(R�s) = E(R�s).

Proof. Note that v�s is a sink in R�s, because an edge whose tail is v�s must come
after e�s, by definition of H�-sequence. Assume that there exists an edge e�t in R�s

with t > s. Take a maximal directed path starting with e�t in R�s. The last vertex
v of this path is a sink and we claim that v �= v�s. If the tails of e�s and e�t coincide,
then head(e�s) is closer to H� than head(e�t). Therefore v �= v�s, otherwise we have
that tail(e�r) is closer to P� than tail(e�t), for e�r ∈ J�s: if not, then e�t would come
before e�r. This implies that v �= v�s, since the last edge of the path is not an edge
of J�s. Thus R�s has more than one sink, contradicting Proposition 21. Thus no e�t

with t > s can exist in R�s.

8. The Proof that G (↑ � ↓)∗
G H

Recall that F � is an (n− 1)-gem inducing Sn−1. Let F ′ be the ball complex associ-
ated to F � in Sn−1. With this definition F � becomes the 1-skeleton of F ′. Remove
a point ∞ ∈ F ′ \F � and let F = F ′\{∞}. Let ε � 1 and P0 a ε-scaled copy of
Pn−1

ε , that is, P0 = ε · Pn−1
ε . Fix a PL homeomorphism of F into R

n−1, so that
the image of the (N\{n − 1, n})-residues are isometric to P0 and the length of the
image of the (n − 1)-edges are at least 1. We do not distinguish between F � and
the image of this homeomorphism.

In order to define adequate hyperplanes H� in R
n−1 we fix a breadth-first search

order (bfs-order, see [3]) to visit the vertices of (the connected graph) F . To find
this order use a queue Q for the vertices defined by the following rules: (i) start
with Q empty; (ii) choose any vertex v; (iii) put v on Q; (iv) put all the not yet
queued v-neighbors in Q (in an arbitrary order) and remove v from Q; (v) if Q

is not empty, make v ← f , where f is the first vertex in Q, and go to step (iii);
(vi) terminate if Q is empty. The bsf-order is the order in which the vertices are
enqueued. Fix the notation

bfs(F ) = (v1, v2, . . . , v�, . . . , v|V (F )|).
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Re-index the permutohedra P1, . . . , P�, . . . , P|V (F )|, so that v� ↔ P�, 1 ≤
� ≤ |V (F )|. From its combinatorial construction, each permutohedron P� has n

{0, 1, . . . , n− 2}-residues, whose set is denoted by M� = {M0
� , . . . , Mn−1

� }. For � ∈
{2, . . . , |V (F )| − 1}, define an injective function λ� : M� → {1, 2, . . . , |V (F )|}\{�},
as follows. Each vertex of M j

� is linked by an (n − 1)-edge to a vertex with the
same permutation in a certain M j

k ⊂ Pk ↔ vk, k �= �. Define λ�(M
j
� ) = k. The

function λ� induces a partition on M� into two non-empty parts: M<
� = {M j

� ∈
M� | λ�(M

j
� ) < �},M>

� = {M j
� | λ�(M

j
� ) > �}. In turn, this bipartition permits the

definition of an adequate hyperplane H′
� associated to P�. Let cj

� be the barycen-
ter of the vertices of M j

� . Define d<
� as the barycenter of the points cj

� , for M j
� in

M<
� and d>

� as the barycenter of the points cj
� , for M j

� in M>
� . Define H1 and

H|V (F )| as arbitrary distinctive hyperplanes for P1 and P|V (F )| respectively. For
� ∈ {2, . . . , V (F )| − 1}, define H′

� as the hyperplane orthogonal to the line r which
links d<

� to d>
� and contains a point d of r, so that (d, d<, d>) appear in this order

in r and P� ∩H′
� = ∅. Let H� be a slight perturbation of H′

� (so that if v is closer to
H′

� than w, then v is also closer to H� than w) so as to become distinctive for P�. An
important aspect of this ordering of the vertices of P�, induced by the distances to
the H�, is that given 1 ≤ j1 < j2 ≤ n− 1 either all the vertices of M j1

� come before
the ones of M j2

� , or vice-versa. In fact, if we denote by Cj1 and Cj2 the convex
subpolytopes induced by M j1

� and M j2
� , it is true that the convex set Cj1 is globally

either closer to or farther from H� than Cj2 . The crucial point is that the vertices in
the elements of M<

� come before the ones in the elements of M>
� . We say that such

a set of hyperplanes H�, 1 ≤ � ≤ |V (F )|, is consistent with bfs(F ). See Fig. 17.
At present we have a bfs(S)-consistent set of hyperplanes H�, 1≤ �≤|V (F )|. Fix

notation so that the H�-sequence of the edges of P� is (e�1, . . . , e�r, e�,r+1, . . . , e�p),
where p = |E(P0)|= (n−1)n!/2. Let (v�1, . . . , v�r, v�,r+1, . . . , v�p) be the correspond-
ing sequence of heads given by the H�-orientation of E(P�), and denote the corre-
sponding sequence of colors by (c�1, . . . , c�r, c�,r+1, . . . , c�p). Starting with G◦

00 = G◦

we produce a sequence of |V (F )| · p pseudogems G◦
�−1,r, by applying the follow-

ing operation o�−1,r to G◦
�−1,r−1 and letting G◦

�−1,p = G◦
�,0, for 1 ≤ r ≤ p and

1 ≤ � ≤ |V (F )|. The operation o�−1,r, which transforms G◦
�−1,r−1 into G◦

�−1,r, is
either the (v′�r, c�r)-correcting flip, in the case that e�r needs to be corrected in
G◦

�−1,r−1, or else the do nothing operation, in which case G◦
�−1,r = G◦

�−1,r−1. Note
that G◦

|V (F )|,0 = H .

Define V <
� = {v ∈ V (P�) | ∃j | v ∈ M j

� ∈ M<
� }, and let P�[V <

� ] denote the
subgraph of P� induced by V <

� . The coboundary of a subset of vertices W in a
graph G is the subset of edges of G having one end in W and the other end in
V (G)\W . It is denoted by δ(W, G).

Proposition 23 (True s-flips). Let t� = |E(P�)| − |E(P�[V <
� ])|. Then all the

operations o�−1,r, t� + 1 ≤ r ≤ p, are correcting flips. More precisely, they are
s-flips.
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Fig. 17. Example of bfs(F )-consistent hyperplanes.

Fig. 18. The true �rth dipole slimming.

Proof. Consider first the case � = 1, t� = 0. In this case, no edge of P� is correct
and every o�−1,r, 1 ≤ r ≤ p, is a correcting flip. Let J�r and R�r be as defined in
Proposition 22. Refer to Fig. 18, where J ′

�r = J�r\{c�r}. Define K�r = N\(J�r ∪
{n − 1}). Let V (R′

�r) be the set of primed vertices corresponding to V (R�r) and
V (S�r) = V (R�r) ∪ V (R′

�r). By Proposition 22, e�r is the last edge of the J�r-
residue R�r of G◦

�−1,r−1. It follows that, except for the two c�r-edges involved in the
(v′�r, c�r)-correcting flip, all the edges in the coboundary of V (S�r) in G◦

�−1,r−1 are

K�r-edges. Therefore we may conclude that (v′
�r)

G◦
�−1,r

K�r
is a dipole, establishing the

proposition for � = 1.
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We claim that, for 1 ≤ � ≤ |V (F )| and for h ∈ {0, 1, . . . , n − 3}, every h-edge
of P�[V <

� ] is corrected in G◦
�−1,0. Let e ∈ E(P�[V <

� ]) be an h-edge. There exists
an �′ < � such that (v�, π), (v�, π

′), (v�′ , π) and (v�′ , π
′) are all the four vertices of

a {h, n − 1}-gon of F � ⊂ G. By trisecting the two (n − 1)-edges of this square,
we get a corresponding {h, n − 1}-octagon in G◦. Therefore, the s-flip which cor-
rects the h-edge of P�′ has the side effect of correcting e, breaking the octagon
into two squares and proving the claim. This side effect is undesirable, because it
makes it impossible, when � > 1, to perform the correcting flips of E(P�) using
the whole sequence (e�1, . . . , e�t�

, e�,t�+1, . . . , e�p) prescribed by the hyperplane H�.
However, by Proposition 24 proved below, we can correct the (n − 2)-edges of
G◦

�−1,0 that are not corrected by a sequence of G-special gem moves. After these
corrections have been made, then we get the gem G◦

�−1,t�
, namely, the same n-gem

that we would have obtained using the first t� corrections prescribed by H�. To go
from G◦

�−1,t�
to G◦

�−1,p = G◦
�,0 apply the last p − t� corrections to the subsequence

(e�,t�+1, . . . , e�p) prescribed by H�. The same arguments used for the proof of the
case � = 1 work for this subsequence. Therefore, to finish the proof, it is enough to
establish Proposition 24.

The geometry of the passage G◦
0 → G◦

1, which thickens P1, is exemplified in
Fig. 19 for the case n = 3. We show G◦

0,2 (G◦ after two s-flips), G◦
0,4 (G◦ after four s-

flips) and G◦
0,6 = G◦

1,0 (G◦ after six s-flips). In the example, the 2-permutohedra are
hexagons, but our arguments apply to the general dimension n. It helps to think of
each short edge in the permutohedra as not a single edge, but a higher dimensional
permutohedra with colors M = {0, 1, . . . , n − 3}, for arbitrary n. The passage
G◦

�−1,0 → G◦
�,0 is named the thickening of the permutohedron P�. In this passage,

we correct the edges of P�, and a parallel copy of P�, denoted P ′
� , is formed. If � = 1,

then an extra copy, P ′′
� , is also produced when we get to G◦

1,0. Since P ′′
� also induces

an (n− 2)-sphere, we modify the homeomorphism, so that it induces an embedded
sphere Sn−2

1 , which separates in R
n−1 the thickened P1 from all the other P�’s.

For � > 1, in the last flip of the thickening of P�, Sn−2
�−1 breaks into two (n − 2)-

spheres P ′
� and Sn−2

� . The latter sphere separates the thickened P1, . . . , P� from
P�+1, . . . , P|V (F )|. We might think of the spheres Sn−2

1 , Sn−2
2 , . . . , Sn−2

|V (F )|−1, as
perturbations of a moving Sn−2

1 sphere. Observe that, after the blobs over the
(n− 1)-edges are created, forming G◦, a number of (n− 2)-spheres induced by the
{0, 1, . . . , n− 2}-residues arise, and all of them have an n-side and an (n− 1)-side,
because they are crossed transversally by an n-edge followed by an (n − 1)-edge.
Since the flips do not involve the colors n − 1 and n, these sides are preserved in
the process of going from G to H , even though these (n − 2)-spheres can coalesce
and break apart in the process.

Proposition 24 (Final step in proving G (↑ � ↓)∗G H). Any (n − 2)-edge in
P�[V <

� ] which is not corrected in G◦
�−1,0 can be corrected by a finite sequence of

G-special gem moves.
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Fig. 19. Thickening the first permutohedron and obtaining a separating sphere Sn−2
1 .

Proof. Let M = {0, 1, . . . , n − 3}. We refer to Fig. 22. The (n − 2)-edges a and b

must be flipped to correct an (n − 2)-edge of permutohedron 15 so that their ends
x′ and y′ become (n−2)-adjacent. Let D be the disk attached to the {n−2, n−1}-
residue of x in G◦. The boundary of D meets a cyclic sequence of permutohedra.
To illustrate the general case, suppose that these permutohedra are indexed by
the bfs-algorithm in F , as shown in Fig. 21. Each permutohedron has a single
(n − 1)-edge in the boundary of G. Consider the sequence of correcting flips from
G◦ to H , which is consistent with the procedure based on the distances to H� and
preserves the order of the permutohedra: namely, if �′ < �, then the edges of P�′ are
corrected before the edges of P�. Then, it follows that the sequence of flips has, as
a subsequence, the one displayed in Fig. 21. In our example, the first (n − 2)-edge
of D that is not yet corrected, when correcting the edges of P�, is (x, y), corrected
in the step from Fig. 21(4) to Fig. 21(5). This is because the permutohedron 15
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Fig. 20. Sn−2
� breaks into P ′

� and Sn−2
�+1 , 1 < � ≤ |V (F )| − 2.

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

6.
15

:1
00

1-
10

35
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 F

E
D

E
R

A
L

 D
E

 P
E

R
N

A
M

B
U

C
O

 o
n 

06
/1

2/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



November 8, 2006 17:21 WSPC/134-JKTR 00490

1032 S. Lins & M. Mulazzani

Fig. 21. In an {n − 3, n − 2, n − 1, n}-residue: a {n − 2, n − 1}-disk becomes an {n − 2, n}-disk.

Fig. 22. There exists an (n − 1)-sphere Sa or else an (n − 1)-sphere Sab which breaks into two.

is the first one adjacent to two lower indexed permutohedra, namely, 5 and 9. We
must then prove that is possible to factorize this correcting flip by G-preserving
gem moves.

Refer back to Fig. 22 and consider the (n−2)-edges a and b that must be flipped.
There are two cases: either a and b belong to distinct ({n − 2} ∪ M)-residues or
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belong to the same ({n−2}∪M)-residue. In the former case, we prove that edge c is
an {n−1}-dipole. If the latter case, we prove that edge d is an {n}-dipole. Suppose
the first case. Let Sa be a slight parallel deformation in R

n−1 of the (n− 2)-sphere
induced by the ({n − 2} ∪ M)-residue of a to its (n − 1)-side, so that it is crossed
only by (n − 1)-edges. The same sphere Sa is present in part 4.c of Fig. 22, and so
we can conclude that c is a {n−1}-dipole. In the other case, consider Sab be a slight
parallel deformation in R

n−1 of the (n − 2)-sphere induced by the ({n − 2} ∪ M)-
residue of a (and b) to its n-side, so that now it is crossed only by n-edges. Consider
part 4.d of Fig. 22, where two ({n− 1}∪M)-dipoles are created. This modification
implies that the ({n− 2}∪M)-residue breaks into two, and so does the sphere Sab,
which breaks into S′

ab and S′′
ab. Since only n-edges cross S′

ab, it follows that d is an
{n}-dipole, as we claimed.

Now the conclusion is easy: gems 4.c and 4.d of Fig. 22 are linked by clean flips.
Indeed, if c is a dipole, then we can go from gem 4.c to gem 4.d by t-flips that thicken
c. If d is a dipole, then we can go from gem 4.d to gem 4.c by t-flips which thicken
d. Gem 4.b is obtained from gem 4.a by two blob creations. Gem 4.c is obtained
from gem 4.b by a dipole slimming. Gem 4.e is obtained from gem 4.d by a dipole
thickening, and gem 4.f is obtained from gem 4.e by two blob cancellations. The
proof is complete.

Summary of the proof of G �∗
G H. By blob creations over the (n− 1)-edges of

F � we get G◦. Each one of these blobs consists of an (n−2)-sphere, which is embed-
ded in R

n−1. The (n− 1)-edge of the blob links, by a line segment in the interior of
this sphere, two opposite points. Each one of the two n-edges incident to the blob
extends the (n− 1)-edge crossing (n− 2)-sphere. The important point is that after
the blobs are created to form G◦, all the original vertices of G◦ are at the (n−1)-side
of each one of the (n − 2)-spheres induced by the new {0, 1, 2, . . . , n − 2}-residues
(each, at creation with two vertices). This property is maintained throughout the
correction phase, which in this context means to thicken each one of the permu-
tohedra P1, P2, . . . , P�, . . . , P|V (F )|, in this order. The thickening of permuthedron
P� is accomplished by G-special gem moves, as follows: (1) all the edges of P�[V <

� ],
except possibly some (n−2)-edges, are corrected by s-flips, which correct the edges
of previous P�′ , �′ < �. Use Proposition 24 to correct, by G-special gem moves,
the (n − 2)-edges of P�[V <

� ] which have not yet been corrected. Then correct the
edges in E(P�)\E(P�[V <]) by the s-flips, according to the algorithm based on the
distances to H�.

9. Conclusion

We have proved the existence of a pair of moves on n-gems, named gem moves, which
act as a combinatorial counterpart for the homeomorphisms of PL n-manifolds.
One of the moves, the clean flip, maintains the set of vertices of the gem. The
other move, the blob move, changes the gem in the simplest possible way in the
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neighborhood of an edge. To test for homeomorphism between |G| and |H | with
|V (G)| ≤ |V (H)|, the n-manifolds induced by gems G and H , the only difficulty
is to find an upper bound for the number α = α(G, H), from which we obtain
α′ = α + (|V (H)| − |V (G)|)/2, and to calculate how many blobs will suffice. The
homeomorphism question becomes: is it true that Gα′ �∗ Hα? This question, of
course, can be solved in finite time, because there are only finitely many gems
equivalent by clean flips, and it is easy to generate them all.

From the theory here developed it follows that, if there is a bound on the
number of Pachner moves [16] linking two triangulations of a manifold, then there
is a bound for α(G, H). Such a bound on Pachner moves for triangulations of the
Seifert fibered manifolds and fibre-free Haken manifolds has recently been produced
by Mijatovic [13, 14]. There is a huge gap between the bounds that the theory can
currently produce and what one might expect in practice. For instance, the theory of
TS-moves, the essential part of the computational classification developed in [10],
is obtained by allowing the creation of only two blobs, as we show in our final
proposition.

Proposition 25 (TS-class implied by two blobs). Let G be a 3-gem and let
H be any 3-gem in the TS-class (cf. [10]) of G. Then G ↑2 G′ �∗ H ′ ↓2 H.

Proof. There are six TS-moves, see [10, pp. 133–137]. In the first 3 we create
an {i}-dipole and cancell another. Clearly for these TS-moves one blob is suffi-
cient: G ↑1 G′ �∗ H ′ ↓1 H. Each one of the other three TS-moves is factored as
an {i, j}-dipole creation, an {k}-dipole creation, a {k}-dipole cancelation and an
{i, j}-dipole cancelation. The proposition is a straightforward consequence of this
factorization.

The theory here presented can be made local and be used to generalize, for
arbitrary dimensions, the results for dimensions 3 and 4 proved in [12]. Another
possibly fruitful research project could be the search for new invariants of PL n-
manifolds based on the gem moves here introduced. Recently we have shown by
means of the computational system BLINK developed by Lauro D. Lins [18] in his
thesis that the addition of three blobs followed by flips connect distinct TS-classes in
an attractor of a 3-manifold. This avoids the use of U -moves which usually increases
by much more than 4 the number of vertices.
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