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An easy implementable polynomial algorithm to test for isomorphism of graphs embedded in
arbitrary compact surfaces (maps) is given,

The maps arc defined algebraically by Tutte's axiom system. We produce a canonical
codification of them as a sequence of 4e integers (2e if the map is orientable) where e is the
number of edges. To test for isomorphism between two maps we just have to compare their
codes,

Some applications relying on the implementation are given.

1. Introduction

A map (of a graph) is usually presented as a connected graph G embedded in a
compact surface S such that the topological space S\G is a collection of disjoint
open discs.

In [1] Tutte introduced the algebraic counterpart that we describe next.

A map is an ordered set of 3 permutations, (M, T, L), acting on a finite
non-empty set B, which elements are called vanes, satisfying the following
conditions:

(orl) TL=LT.

(or2) T?= L?=Identical permutation.

(or3) For each x in B, the elements x, Tx, Lx and TLx are distinct.

The way that M is related to the system is through the axioms:

(mpl) MT=TM".

(mp2) M*x# Tx, for every integer k and x in B.

If the following axiom holds, then we have a connected map.

(mp3) (M, T, L) is transitive on B, where (M, T, L) denotes the group of
permutations generated by M, T and L.

If (M, T, L) acting on B is a map, then we say that M is a (T, L)-map. If no
confusion arises, the reference to T, L and B are suppressed and we say simply
map M. Because of this simplification, M is called the main permutation of the
map. T and L are called, respectively, transversal and longitudinal orientations of
M.

\ As a simplification in the notation we write x’ for Tx and —x for Lx.

Axioms (orl) and (or3) imply that the orbits of the group of permutations
generated by T and L, (T, L), have 4 elements each. Each such orbit is called an
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edge. In particular this implies that the cardinality of B is divisible by 4. The set of
all edges of M is denoted by E(M). Edge {x, x’, —x, — x'} is denoted by /x/.

Given x in B, the cycle of x under M is denoted by orb (x, M). From (mp2) it
follows that orb (x, M) and orb (x', M) are disjoint, for any x. The unordered pair
{orb (x, M), orb (x', M)} is called a vertex of M. Since one of the orbits completely
determines, by (mp1), the other, which we call its opposite, we speak of the vertex
orb (x, M) even if logically not precise. The set of vertices of M is denoted by
V(M).

The graph of a g-map M, gr (M), is the graph where the vertices and edges are
those of M, such that the ends of edge /e/ are orb (e, M) and orb (—e, M).

A connected map M is called orientable if (M, TL) has two orbits on B. The
alternative is to have one orbit and in this case M is said to be non-orientable.
The orientability label, OL, is defined as OL (M)=1, if M is orientable and
OL (M) =0, if it is not.

If Misa (T, L) map, then D=MTL is an (L, T)-map called the dual of M. See
[1].

The Euler characteristic, EC, of a map M is the integer

EC (M) = |V(M)|+|V(D)|- |[E(M)].

The pair (OL (M), EC (M)) is called the combinatorial surface of M and
denoted by SURF (M).

We now sketch briefly the connection between the algebraic and topological
maps.

A connected graph G embedded in a compact surface S defines a map M with
gr (M) =G and SURF (M) = S, the converse being also true.

We give only an example of this relation. For more detailed treatment we refer
to Tutte’s original paper [1] or to [2]. Consider the map given by the following
scheme, where each row represents an orbit of a vertex.

vertex Uu 1 =7 6 -—-11 10
vertex v -1 -8 =9 2 —-15
vertex w -2 -—14 3 12 7
vertex x -3 13 8 -1 4
vertex y -4 15 14 5 11
vertex z —35 9 -6 -—-13 -12

It can be seen, by computing the dual, that EC(M)=-3 and also, since
(M, TL) is transitive on B, that OL (M) = 0.

We present an embedding of gr (M) in the non-orientable surface of Euler
characteristic —3. See Fig. 1.

Note that each edge has a double orientation, the 4 combinations of them
forming its 4 vanes. The longitudinal orientation is reversed by the application of
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Fig. 1.

L and so is the transversal orientation by the application of T. M acts by rotating
a vane to the next by using the tail of the edge as axis of rotation, rotating in the
direction indicated by the crossing arrow. The hole without label is a cross-cap,
the ones labeled A form an orientable handle and the ones labeled B form a
non-orientable handle.

A simple inductive approach provides a general algorithm to go from the
scheme of a combinatorial map to its drawing in the correspondent topological
surface. For more detailed analysis we refer to [2].

2. Computing the symbol

All the maps of this section are connected.

Given two maps, (M, T, L) acting on B and (N, X,Y) acting on C, we say that
they are isomorphic if there exists a bijection i between B and C such that for all
vanes x in B we have:

(is1) i(Mx)= N(i(x)).
(is2) i(Tx)= X(i(x)).
(is3) i(Lx)= Y(i(x)).

This definition agrees with the intuitive topological idea, which is formalized in
terms of homeomorphism between the two surfaces such that the image of one
graph is the other. The combinatorial definition is, however, much more easy to
work with since it provides an immediate answer for the question of deciding if
two maps are the same, as we show.

A rooted map is a pair (M, b) where M is a map and b is one of its vanes. This
rooting is equivalent to the one used by Tutte in his enumerative work: That is
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iate with a vane an edge (its supporting edge), a vertex (jtg

because we can assocC : -
| of its crossing arrow),

tail) and a face (the face which contains the tai '
Next proposition shows the importance of rootings.

2.1. Proposition (Rooting and isomorphism). An isomorphism between two maps
is determined by the knowledge of the image of one vane.

Proof. As we are dealing with connected maps, given any two vanes x and y,
there exists a word f, formed by M, T and L (meaning composition of permuta-
tions) such that f(x)=1y.

Assume that we are under the hypothesis of the proposition, that is, we have an
isomorphism i between map (M, T, L) acting on B and map (N, X, Y) acting on
C, and we know that i(b)=c.

Given vane x in B, find f, word in M, T and L, such that f(b)=x. Word f
corresponds to a word g in N, X and Y, formed by replacing M for N, T for X
and L for Y. The definition of isomorphism for maps implies then

i(x) = g(i(b)) = g(c).
This proves the proposition. [

We say that rooted map (M, b) is isomorphic to rooted map (N, c) if the maps
M and N are isomorphic and the image of b is ¢ under the isomorphism.

As previous proposition shows, unlike for graphs, the isomorphism problem for
rooted maps is simple in principle. However it is not clear how to get the various
words f to get the image of the other vanes in two isomorphic rooted maps. There
are many alternatives to get those. We present an indirect systematic method
which is easy to implement in a computer and that is also conceptually simple.

Given a rooted map (M, r) we start by attaching numbers to exactly half of the
vanes of M by means of the algorithm that follows. It uses the following concepts:

A stack s.

The notion of a current vane z.

The current number n.

2.2. Rooted Numbering Algorithm. (a) Give to the root r the number 1. Make
n=1 and stack s empty. Go to step (b).
(b) If a vane x just received number 2n—1, then
(i) Put x on the top of s.
(ii) Give the number 2n to vane — x'.
(iii) Make —x' the current vane z.
(iv) Go to step (c).
(c) To find the vane with number 2n + 1 look for the first M-successor of 2, s8Y

-
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x, such that x and x' are not yet numbered. We have two cases:
(cl) If such M-successor is found:
(i) give to x number 2n+ 1.
(ii) increase n by 1.
(iii) go to step (b).
(c2) If there is no such M-sucessor:
(i) If s is not empty make z equal to the top of s and remove this
clement from s. Try step (c) again.
(ii) If s is empty, then z must be b and the rooted numbering algorithm
is complete. O

Clearly the above algorithm is polynomial: Every vane enters the stack s at
most 1. (Precisely 1 for the odd numbered and O for the even numbered.) The
number of times that we apply M and TL before some modification of the stack is
accomplished is bounded by the maximum valency of a vertex.

The following important proposition is clear from the definitions.

2.3. Proposition (Rooted numbering and isomorphism). Bijection i is an
isomorphism between (M, b) and (N, ¢) if and only if for any vane x of M and the
respective rooted numberings numb (x) = numb (i(x)).

Proof. Immediate. [

For two examples of the rooted numbering algorithm we refer to Fig. 2. There
is presented two maps, one planar and the other in the projective plane. (Or PP
for short.) X

The vanes numbered are the ones for which we present the transversal
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orientations. Their longitudinal orientations are always outdirected .and SO are not
presented. Observe that as a consequence of the rooted numbering algorithm,
vane x is numbered if and only if vane x’ is not numbered. Also the numbers
attached are 1,...,2e where e is the number of edges.

Note that for the planar one all the transversal orientations ar.e clockwise, while
this is not the case for the projective. Next proposition will deal with this
observation.

2.4. Proposition (Rooted numbering in orientable maps). A map M is orientable
if and only if all the vanes which receive number by the rooted numbering algorithm
(with an arbitrary root) are clockwise (or counterclockwise) in a drawing for M.

Proof. The algorithm numbers the root and proceeds numbering vanes obtained
from the root by iterated application of TL and M. Therefore the vanes which
reccive numbers form an orbit of (M, TL) if and only if M is orientable. The
interpretation of the crossing arrows in the drawing, then, proves the
proposition. O

We want to use the rooted numbering of a rooted map to form a canonical
symbol for the latter. From the symbol we are able to recover the rooted map

with the vanes labeled in a canonical way. A summary of the process is the
following:

Scheme with arbitrary labels

@

umbering

@

Rooted

T S,

Canonical symbol

©)

Scheme with canonical labels

Up to now we have only explained the first step. Before going into the second we
want to define what we mean by canonical labeling for the vanes.
The set of labels is the subset of integers from 1 to 4e.

The canonical labeling, by definition, satisfies the following:
Tx=x+1 if x is odd,
=x—1 if x is even.
Ix=x+2 if x=1 or 2mod 4,

=x—2 if x=0 or 3mod 4.

The above requirements do not depend on the numbers of the vanes given by
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the rooted numbering algorithm. However we also require that vane with number
2x — 1 must be labeled 4x—3.

Now it is an easy matter to check that the rooted numbering uniquely defines
labels, for all the vanes. These labels, attached in the above way, are called
canonical labeling.

The canonical symbol is obtained as follows from the rooted numbering. We
use two functions p, q:2E — 2E, where 2E is the subset of integers from 1 to 2e,
For all vanes x which receive a number we define:

p(numb (x)) =numb (Mx) or numb ((Mx)’) whichever exists. Also for every
vane x which did not receive a number we define:

g(numb (x")) = numb (Mx’) or numb ((Mx')") whichever exists.

The canonical symbol for the rooted map is then, by definition, the finite
sequence with 4e elements:

(p(1), p(2), ..., p(2e);a(1),q(2), ..., q(2e)).

We observe that in a drawing p(x) is obtained by looking at the number of the
dart pointed by the head of the crossing arrow of dart numbered x. Analogously
q(x), replacing head by tail. This observation together with Proposition 2.4 imply
that p and q are bijections if and only if M is orientable. If that is the case, then p
and q are inverses permutations and the canonical symbol can be simplificd to
(p(1), p(2), . .., p(2e)).

The above concludes our considerations about step 2. Now comes the more
important, yet simple, step 3.

2.5. Proposition (Recoverability). A rooted map is recoverable from its canonical
symbol.

Proof. The map will be recovered with the canonical labeling for the vanes. Since
this accounts for B, T and L we just have to recover M.

The equality p(x)=y implies exactly one of the following:

(a) M2x—1)=2y—1, if x and y are both odd.

(b) M(2x—1)=2y, if x is odd and y is even.

(c) M(2x)=2y—1, if x is even and y is odd.

(d) M(2x)=2y, if x and y are both even.

Analogously the equality q(x)=y implies exactly one of the following:

(a) M(2x)=2y, if x and y are both odd.

(b) M(2x)=2y-1, if x is odd and y is even.

(c) M(2x-1)=2y, if x is even and y is odd.

(d) M(2x—1)=2y—1, if both x and y are even.

The two implications above will account for the value of M in its de vanes
proving the proposition. [

We have defined the symbol for a rooted map. However, since it is a finite
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we can easily define the symbol for the map itself. Take it g5

nce of integers :
et | graphical maximum among the symbols for its rooted maps,

for instance, the lexico

3. Applications

We have implemented the algorithm to compute the symbol of a map and we
would like to briefly outline a number of possibly interesting applications.

3.1. Isomorphism of graphs

Several papers have been written about isomorphism of planar graphs, as for
instance, [4] and [5]. The technique that gives polynomial algorithms consists in
considering planar drawings of the graphs and test for isomorphism of maps. The
point is that by Whitney’s Theorem, [3], if the graph is vertex 3-connected the
map is unique. Extensions of this method permitting to deal with all planar graphs
appear in [5).

The same techniques extend beyond the plane if we are able to produce classes
of graphs for which the number of embeddings in a given surface is small and
produced by a polynomial algorithm. For the classes of graphs such that this
assumption is true, we can decide isomorphism in polynomial time by comparing
the symbol of one embedding of the first graph with the symbols of all the
embeddings of the second.

We do not want to leave the topic without giving a specific example of a class of
graphs for which the above assumption is true.

A connected graph is said to be cyclically n-connected if the smallest (with
respect to number of edges) coboundary such that after its deletion both compo-
nents contain cycles has n edges.

Consider the class CP* of the cubic cyclically 4-connected graphs which are
graphs of projective maps and contain a subgraph homeomorphic to the Petersen
graph. The Petersen graph with labels on the vertices embeds in exactly two
distinct ways in the projective plane. See Fig. 3.

To embed in PP a graph in the class CP* we proceed as follows. As we have a
subgraph homeomorphic to the Petersen graph we can proceed from it to get the
given graph by subdividing the faces of an embedding of it, being careful not t0
create any (subdivided by bivalent vertices) mono, bi, or triangular faces. This i
possible by the assumption that the graph is cyclically 4-connected.

The first such subdivision decides which of the two is the embedding t0
proceed: that follows by the perfect symmetry (only one rooted map) of the
embeddings of the Petersen graph in PP. Essentially the unique subdivision i
shown in the embedding on the left. By the symmetry it can be supposed between
edges 1, 9 and 2, 10 as it is shown in Fig. 3. Note that this subdivision is not
possible in the embedding on the right. That means that any path that we put O

Fafn
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Fig. 3.

the graph will have to go through a unique face of the map and from this point on
everything is forced. Follows that the isomorphism test for graphs in CP? is
polynomial. A recursive construction for the graphs in CP* is given in [9].

Recently a polynomial algorithm to test for embeddability of graphs in the
projective plane (possibly extendable to the torus) was devised by Younger [6]. It
is conceivable that this algorithm together with the techniques developed in [5]
and the idea of symbol for a map might be put together to solve polynomially the
isomorphism problem for general projective graphs or even graphs in surfaces of
higher connectivity. The matter is not carried any further in this paper.

3.2. Construction of catalogs

The symbol generated by the algorithm explained is suitable for the generation
of catalogs of specific classes of maps, as did in [7]. In practice the search for the
symbol of the map among the 4e possibilities can be considerably reduced by
means of “ad hoc” conventions such as to have the distinguished root incident to
a vertex of maximum valency or to the face of smallest valency, etc. The sequence
representation permits convenient storage and fast identification of duplicates by

means of binary search trees or their variants.

3.3. “Enantiomorphic” forms in the Heawood map

The Heawood embedding of seven countries in the torus has two distinct
rootings. This fact is interesting because it is, at least to the author, very
non-intuitive, Apparently we have perfect symmetry. Fig. 4 shows the two
different numberings.

The symbols agree up to the 20th coordinate:

(7,3,11,5,15,1,19,9, 23, 2,27, 13,31, 4, 35, 17,39,6,42,21,30,...)

(7,3,11,5,15,1,19,9,23, 2,27, 13,31, 4,35,17,39,6,42,21,36,...)
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3.4. Finding automorphism groups and symmetrical drawings

The symbol for rooted maps can be used for polynomial computation of the
automorphism group of the map. Just look for the roots that give lexicographical
maximum symbol. Those are precisely the equivalent vanes and they induce the
automorphism group of the map. We can describe this group as group of
permutations of vanes, edges, vertices, faces, etc, whichever is more convenient.

The smallest set of elements which permits a nondegenerated description is
usually the better. For instance the automorphism group of the projective map of
Fig. 5 as face permutations is:

1 23 45 6 7
2136 5 47
1 27 6 5 4 3
217 45 6 3

It is non-degenerated because all the 4 permutations are distinct, and we can
see that exactly 4 vanes give maximum symbol: 1,2, 3, 4.

The drawing on the top of Fig. 5 has no apparent symmetry. However using the
information about the symmetry on the faces we are able to produce the drawing
on the right which shows all the symmetries in the planar drawing.

This fact is easily generalized: given the automorphism group of a map it 1s
possible to find a planar drawing showing at least a non-trivial subgroup of its
automorphism group. The technique was extensively used in [7] for the construc-
tion of the drawings of first part of the planar maps generated.

3.5. Two distinct triangular embeddings of K,

Sometimes in the solution of the Heawood map conjecture, by using distinct
groups, two triangular embeddings of the same complete graph in (necessarily) the
same orientable surface are produced.

A specific case of two triangular embeddings of K,, is presented in [8, pp.
344-345). The duals of these maps consists of 12 faces which are 11-gons
mutually adjacent by exactly one edge forming a cubic graph with 44 vertices.hAre
the maps different? Or is it possible to find an isomorphism between them? To
answer this question we have translated the embeddings given in the above
reference into our terminology and computed the symbols for the maps.

The choice of K,, was motivated by the fact that 12 is the next regular
orientable tase after 7. We believe that K, (dual of Heawood map) is known to be
uniquely embeddable in the torus.

Let us call M and N the two embeddings of [8]. Just as a matter of reference,
we give the vertices, the faces and the symbols (lexicographical maximum) for M
and N. The information is, of course, doubly redundant. However the redundancy
might be used to check the algorithm presented in this paper. ‘
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Fig. 5.

Vertices of first embedding: M

V.1 -3 -9 -21 -32 -48 49° 33 2 10 & 1
V.2 -1 -5 -13 28" =27 36' -35 -54 14 ¢ 9
V.3 -2 -7 -17 -24 -38 -65 39 25 188 g 3
V4 -4 =11 60" 59" 44" -43 -s8 26' -25 12 5
V.5 -6 —15 46’ -45 -63 42" -41 11" -10 16 7
V.6 -8 -19 -28 -40 52" =51 -60 41 29" 20 9
V.7 -—-12 =39 47" 32" -31 -46 -56 -66 577 40 13
v8 -14 -55 38 -37 -59 51" 34 -33 -50 s¢ 15’
v9 -16 =22 -34 -52 -57 61' 58 s3¥ 35 23 7
V.10 =18 =26 -6l 66" 50" -49 64 63 62 277 19
V.iir =20 -30 -44 37 24 -23 -36 -62 45" 31 271’
V.12 =29 -42 -64 48' -47 65" 55" 54 -s53 43 30
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Vertices of sccond embedding: N

V.1 -3 -9 -21 -32 -63 64’ 33 22 10’ 4 1
v.2 -1 -5 ~-13 -44 -66 45’ 42' -41 14' 6' 2
v.i -2 =7 -17 -24 -38 -48 -39 25 18’ 8’ 3
V.4 -4 =11 40" -39 -49 28' =27 36" -35 122 &
V.S -6 -15 -62 53 300 -29 -52 11" -10 16' 7'
V.6 -8 -19 -28 -50 -57 66’ 58' 51 29' 20' 9’
V.7 =12 -46 ar 21" =20 -30 -54 47 g8 -37 1%
v -14 -60 56’ 5¢' 49’ 48' -47 =55 -64 61' 15
V9 ~16 =22 -34 -45 57" -56 -65 46’ 35’ 23 17
V.10 -18 -26 -42 34" -33 55 54' —53 43’ 27 19’
V.l -23 -36 -43 62' -61 63’ 59' —58 44' 37" 24
V.12 -25 -40 52 -51 -59 32" -31 65’ 60’ 41" 26’
Facesof M

F1 -3 -2 -1 F.16 15 46 -56 F.31 33 -50 -49

F.2 1 -5 -4 F.17 17 -24 -23 F.32 34' =52 -51

F.3 2 -7 -6 F.18 18 -26 —-25 F.33 35' —-54 -53

F.4 3 -9 -8 F.19 19" -28 —-27 F.34 37" =59 44’

F.5 4 ~-11 -10 F.20 20’ =30 —-29 F.35 38 -65 55

F.6 5 -13 —-12 F.21 21’ -32 -31 F.36 39' 47" 65

F.7 6 —-15 -14 F22 22" -34 -33 F.37 40" 52' -57

F.8 7 -17 -16 F.23 23 -36 -35 F.38 42' —-64 63

F.9 8 -19 -18 F.24 24" -38 -37 F.39 43 -58 53

F.10 9" -21 -20 F.25 26' —-61 58 F.40 45 -63 62

F.11 10" 16" =22 F.26 27" 36" —62 F.41 48 49" o4

F.12 11' 60" 41 F.27 29 —42 —-41 F.42 50" 56" —66

F.13 12' -39 25 F.28 30' —-44 -43 F.43 51' -60 59

F.14 13’ 28' -40 F.29 31' —46 -45 F.44 57 61 66

F.15 14' =55 54’ F.30 32' —48 -417

Faces of N

F1 -3 -2 -1 F.16 15 -62 —-61 F.31 31' 65 4¢

F.2 '’ -5 -4 F.17 177 -24 -23 F32 32" -63 59

F.3 22 -7 -6 F.18 18 -26 -25 F.33 33 55 -64

F.4 3 -9 -8 F.19 19" -28 -27 F34 34 -45 42

F.5 4 -11 =10 F.20 20' -30 -29 F.35 38 —48 —47

F.6 5'=-13 =12 F.21 21" -32 -31 F.36 39" -49 48’

F.7 6'-15 -14 F.22 22" -34 -33 F.37 43 62 53

l:'.B T =17 -16 F.23 23 -36 ~-35 F.38 44’ -66 58

F.9 8 -19 -18 F.24 24' -38 -37 F.39 45 S7° 66

F10 9 -21 -20 F.25 25 -40 -39 F.40 47' -55 54’

If.ll 10 16’ =22 F.26 26' -42 -41 F.41 50 ~57 -56

l:.IZ 11" 40" 52 F27 27 36 -43 F.42 51' =59 -58

F13 12" -46 35’ F28 28 -50 49’ F.43 56’ —-65 60'

F14 13 -44 37" F29 29' =52 -51 F.44 61' 63 64

FI5 14' =60 41" F.30 30' -54 -53

261
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Symbol for M (listing of its function p)

1 7 2 3 3 1 4 5 5 15

6 1 7 19 8 9 9 23 10 2
11 27 12 13 13 31 14 4 15 35
16 17 17 39 18 6 19 43 20 21
21 82 22 8 23 50 24 25 25 179
26 10 27 108 28 29 29111 30 12
31 20 32 33 33 45 34 14 35 49
36 37 37 53 38 16 39 57 40 41
41 61 42 18 43 65 44 32 45 69
46 47 47 73 48 34 49 77 S0 51
51116 52 36 53123 54 55 55 26
56 38 57 81 58 59 59 85 60 40
61 89 62 63 63 93 64 42 65 97
66 67 67 101 68 44 69 105 70 71
71 54 72 46 73 88 74 75 75110
76 48 77 130 78 24 79 113 80 56
81 120 82 83 83126 84 58 85106
86 87 87 117 88 60 89 124 90 91
91 30 92 62 93 78 94 95 95128
96 64 97 96 98 99 99 131 100 66
101 118 102 103 103 80 104 68 105 115
106 107 107 109 108 70 109 129 110 28
111 100 112 92 113 132 114 104 115 121
116 86 117 119 118 74 119 22 120 102
121 114 122 52 123 125 124 72 125 127
126 90 127 98 128 84 129 94 130 76
131 122 132 112

Symbol for N (listing of its function p)

17 2 3 3 11 4 5 5 15
6 1 7 19 8 9 9 23 10 2
11 27 12 13 13 31 14 4 15 35
16 17 17 39 18 6 19 43 20 21
21104 22 8 23 70 24 25 25 74
26 10 27 82 28 29 29121 30 12
31 20 32 33 33 45 34 14 35 49
36 37 37 53 38 16 39 57 40 41
41 61 42 18 43 65 44 32 45 69
46 47 47 73 48 34 49 77 50 51
51 81 52 36 53 85 54 55 55 98
56 38 57 101 58 59 59105 60 40
61 92 62 63 63118 64 42 65 127
66 67 67 84 68 44 69 91 70 71
71 S4 72 46 73 87 74 75 75 93
76 48 77 96 78 79 79 22 B0 50
8] 119 82 83 83 89 84 52 85 106
R6 72 87116 88 26 89132 90 68
91 130 92 24 93108 94 9 95 97
96 76 97 99 98 78 99 111 100 56
101 115 102 103 103 80 104 58 105 124
106 107 107 109 108 60 109 66 110 94
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111 120 112 113 113 90 114 100
116 117 117 125 118 102 119 129
121 128 122 123 123 86 124 39
126 64 127 126 128 110 129 ¢
131 114 132 88

115 131
120 28
125 122
130 112

We can observe that the symbols start dj
the embeddings are really distincts!

The fact suggests that the problem of minim
graphs, even in the regular cases, most likely,

ffering from 21st. coordinates on. So

um embeddings of complete
have many ditferent solutions.
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