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Abstract

Let P be a sequence of length 2n in which each element of {1,2,...,n} occurs twice. Let P’ be a
closed curve in a closed surface S having n points of simple self-intersections, inducing a 4-regular graph
embedded in S which is 2-face colorable. If the sequence of auto-intersections along P’ is given by P,
we say that P’ is a 2-face colorable solution for the Gauss code P on surface S or a lacet for P on S.
In this paper we show (by using surface homology theory mod 2), that the set of lacets for P on S are
in 1-1 correspondence with the tight solutions of a system of quadratic equations over the Galois field
GF(2). If S is the 2-sphere, the projective plane or the Klein bottle, the corresponding quadratic systems
are equivalent to linear ones. In consequence, algorithmic characterizations for the existence of solutions
on these surfaces are available. For the two first surfaces this produces simple proofs of known results.
The algorithmic characterization for the existence of solutions on the Klein bottle is new. We provide a
polynomial algorithm to resolve the issue.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

By a polygon in a graph G we mean a connected non-null subgraph whose vertices have
valence 2. In this work, by a cycle in a graph we mean a subset of edges inducing a subgraph
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(possibly empty or non-connected) having only vertices of even valence. This terminology is
non-standard in graph theory. However, it seems appropriate here because our cycles are closed
1-chains in the sense of homology mod 2, see Giblin [4]. The standard definition of cycle, as the
edge-set of a polygon, is just a particular case of our cycles. The set of cycles form a vectorial
space over GF(2) where the sum is given by the symmetric difference. We denote this vector
space by CS(G).

Basic concepts on graph theory are given in the book of Bondy and Murty [1]. For topological
graph theory see the book of Bonnington and Little [2]. Background material on the topic of
graphs embedded on surfaces can be found in the book of Mohar and Thomassen [11]. For
background in algebraic graph theory see the book of Godsil and Royle [6].

A topological map, or simply a r-map M' = (G, S) is an embedding of a graph G into a
closed surface S such that S\G is a collection of disjoint open disks, called faces. A Gauss
code P is a cyclic sequence in the set of labels £ = {1,2,...,n} in which each x € E occurs
twice. Let P’ be a closed curve in a closed surface S having n points of simple self-intersections,
inducing a 4-regular graph embedded into S such that the cyclic sequence of self-intersections
reproduces P. If the embedding of P’ produces a 2-face colorable -map, we say that P’ is a
lacet for P on S. Without the 2-face colorability condition the algebra derived from maps with a
single zigzag [7] is not available and an entirely different problem arises. A solution for the non-
2-face colorable case for the projective plane has been given in [12]. Here, however, lacets are
2-colorable. In this case, P’ is the medial map [6] of a map M formed by a graph G j; embedded
into S. M has a single zigzag [8]. The dual of M is denoted D and its phial [8] is denoted P.
G p, the graph of P, has a single vertex (corresponding to the single zigzag). Previous work on
the Gauss code problem can be found in [7,9,10,13,14,16]. The last two works solve the 2-face
colorable problem for the case of the projective plane. The previous works deal with the planar
case in which the 2-face colorability is granted. In the present work we algorithmically solve the
problem for the Klein bottle.

The problem for surfaces of Euler characteristic O has been considered by in [3]. This pa-
per introduces the terminology lacet and finds characterizations for the realization in the torus
(Theorem 19) and in the Klein bottle (Theorem 20) in terms of the existence of a pair of 0-1
vectors with certain properties. However, the verification of the existence of these vectors is left
undiscussed. In fact, to verify their existence leads to an exponential number of trials. So the
theorems do not provide polynomial algorithms for the existence of a lacet on those surfaces. In
this algorithmic sense the problems are not solved in [3].

In this paper we obtain an algorithmic solution for the Klein bottle. We also provide a way
for finding the surface with the greatest Euler characteristic realizing a Gauss code as a lacet in
terms of deciding whether or not a quadratic system of equations over GF'(2) is consistent.

The paper is organized as follows. Section 2 briefly reviews the theory of combinatorial maps
as given in [8] to state the Parity Theorem [7], which is needed in this work. In Section 3 we
discuss two linear transformations cp and cp~ arising from a ¢-map with one zigzag. These
function play a central role in our methodology. In Section 4 we state and prove the main results
on arbitrary surfaces—orientable and non-orientable. Section 5 we produce the equivalent lin-
ear systems for the case of 2-sphere, projective plane and Klein bottle. Finally, short Section 6
consists of a concluding remark and acknowledgments.
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Fig. 1. The six neighborhoods of a rectangle inducing M, D, P, M~, D™, P™.

2. Combinatorial maps and a Parity Theorem

To make our objects less dependent of topology we use a combinatorial counterpart for topo-
logical maps introduced (with a small variation) in [7,8]. A combinatorial map or simply a map
M is an ordered triple (Cys, vayr, famr) Where: (i) Cyy is a connected finite cubic graph; (ii) vy and
fm are disjoint perfect matchings in Cjpy, such that each component of the subgraph of Cj, in-
duced by vy U fir is a polygon with 4 edges and it is called an M -rectangle.

From the above definition, it follows that Cp; may contain double edges but not loops. A third
perfect matching in Cys is E(Cpr) — (v U far) and is denoted by ays. The set of diagonals of
the M -rectangles, denoted by zjy, is a perfect matching in the complement of Cjs. The edges in
vum, fum, 2u,ap are called respectively vpr-edges, fir-edges, zp-edges, apr-edges. The graph
Cp U zy is denoted by Qp, and is a regular graph of valence 4. A component induced by
ay U vy is a polygon with an even number of vertices and it is called a v-gon. Similarly, we
define an f-gon, and a z-gon, by replacing v for f and v for z. Clearly, the f-gons and z-
gons of Cyy correspond to the facial paths and the zigzags of M’. To avoid the use of colors
the M-rectangles are presented in the pictures as rectangles in which the short sides (s) are vy-
edges, the long sides (£) are fjs-edges and the diagonals (d) are z)s edges. An M-rectangle
with diagonals or simply an M -rectangle (being understood that the diagonals are present) is
a component induced by vy, fur, zym. If m is a permutation of the symbols s€d, then M (i)
denotes the map obtained from M by permuting the short sides, the long sides and the diagonals
according to 7w in all » € R. The dual map of M is the map D = M ({sd); D and M have the same
z-gons and the v-gons and f-gons interchanged. The phial map of M is the map P = M (d{s); P
and M have the same f-gons and the v-gons and z-gons interchanged. The antimap of M is the
map M~ = M(sdf); M and M~ have the same v-gons and the f-gons and z-gons interchanged.
The pairs (M, D), (M, P), (M, M™) constitute the map dualities introduced in [8]. The dual of
P is D™ and the dual of M~ is P™ (see Fig. 1).

Given a map M and its dual D, there exists a closed surface, denoted by Surf(M, D) where
Cpy = Cp naturally embeds. Consider the v-gons, the f-gons and the M-rectangles bounding
disjoint closed disks. Each edge of Cy; occurs twice in the boundary of this collection of disks.
Identify the collection of disks along the two occurrences of each edge. The result is a closed sur-
face and C\y is faithfully embedded on it, meaning that the boundaries of the faces are bicolored
poly gons or bigons. Similarly, there are surfaces Surf(D™, P) and Surf(P~, M™).

We define a function ¥ which turns out to be a bijection from the set of maps onto the set of
t-maps. We denote (M) by M’. Given a map M, to obtain M' we proceed as follows. Con-
sider the r-map (Cyy, S), where S = Surf(M, D), given by the faithful embedding of M. The
v-gons, the f-gons and the M-rectangles are boundaries of (closed, in this case) disks embedded
(and forming) the surface S(M). Shrink to distinct points the disjoint closed disks bounded by
v-gons. The M -rectangles, then, become bounding digons. Shrink each such bounding digon to
a line, maintaining its vertices unaffected. With these contractions, effected in S, -map (Cyy, S)
becomes, by definition, M’ = (G, S). Graph Gy is called the graph induced by M. A combi-
natorial description of G s can be given as follows: the vertices of G, are the v-gons of M; its
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edges are the rectangles of M; the two ends of an edge of Gy are the two v-gons (which may
coincide and the edge is a loop) that contain the vys-edges of the corresponding M -rectangle.
It is evident that i is inversible: given a r-map we replace each edge by a bounding digon in
its surface, and then expand each vertex to a disc in order to obtain a cellular embedding of a
cubic graph. Therefore, w_l is well defined; in fact, it is the dual of a useful construction in
topology, namely, barycentric division. Thus, ¥ is a bijection from the set of maps onto the
set of r-maps. It can be observed that i induces a bijection from the set of M -rectangles onto
the set of edges of Gjs. We use this bijection to identify the sets R and E(Gjy). Via the set of
M -rectangles (with their diagonals), which is invariant for {M, D, P, M~ , D™, P™"}, we identify
E(Gy) and E(Gyy) for M € {D, P, M~, D™, P™}. Denote these identified sets of edges by E,
with |E| =n.

Consider the function Iﬂéw from the cycle space of Cyy, onto the cycle space of G . It is de-
fined as follows: for X € CS(Cys), anedge e € E isin ¢CM (X) if the intersection of the rectangle
corresponding to e with X contains exactly one fjs-edge. With this definition, it follows that
1/;6’."’()() is a cycle in G and that ‘/&M is surjective.

Proposition 1. (See [7].) xpCM is a homomorphism. Its kernel is the subspace of CS(Cyr) gener-
ated by the v-gons and the rectangles of M.

Since every element of the kernel of ¥ has an even number of edges of Cyy, it follows
that if M (S1) = M (S,), then |S;| = |S>| mod 2. This observation makes the following defi-
nition meaningful. A cycle S in Gy is called an r-cycle in M" if yM(S’) = S and |S'| is odd,
for some cycle S’ in Cy. If |S'| is even and ¥ (S') = S, then we say that S is an s-cycle
in M". r-Circuits are minimal r-cycles. We observe that the r-circuits in M’ are precisely the
orientation-reversing polygons in M’. This topological notion is not used; we work with our par-
ity definition of r-cycle. The following proposition shows that the type of cp (i) depends only on
the parity of A5 ().

Proposition 2. (Parity Theorem [7].) If M is a map with a single z-gon, then cp (i) is an s-cycle
in M" if and only if |5 (i)| is even.

In the next section we display an example on the Klein bottle. The basic motivation is to
exemplify a pair of linear transformations which in general arise from a map M with a single
z-gon, so that its phial P has a single vertex. This pair of linear transformations constitutes the
main tool to get the main theorems, Propositions 4 and 5.

3. The linear transformations cp and cp~

Consider the example of a -map M on the Klein bottle given in Fig. 2. It has four vertices
eight edges, four faces and a single zigzag given on the left of Fig. 1. The cyclic sequence of
edges visited in the zigzag is

P=(1,4,5,6,543,8,7,3,2,—-1,-2,8,7, —6).
This can be followed in the lacet P’. Note that P’ is the medial map of M. The direction of the
first occurrence of an edge of G s defines the orientation. Edges 3, 4, 5, 7, 8 are traversed twice

in the positive direction (they correspond to black circles in the medial map) and edges 1, 2, 6
are traversed once in the positive direction and once in the negative direction (they correspond to
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Fig. 2. A t-map in the Klein bottle and its medial P’, |V (P) = 1|. Gauss code P = 1456543873212876.

white circles). The reason for the notation P is that the signed cyclic sequence defines the phial
map P (whence also M, D and P™, as well as the surface of M) and vice-versa, the phial defines
the sequence. For the algebraic concepts we refer to [5]. For the graph terminology refer to [1,6].
For more background on graphs embedded into surfaces we refer to [4]. Given a map M with a
single z-gon and rectangle set E, we define linear functions (over the field GF(2)) A5 : 2E _, 2F
and tp : 2F — 2F as follows. They are defined in the singletons and extended by linearity. Let
A5 ({i}) be the set of edges occurring once in the cyclic sequence P between the two occurrences
of edge i. Let 7p(i) = {i} if i is traversed twice in the same direction in the zigzag path (i is a
black vertex in the medial map P’), and tp (i) =@, if i is traversed in opposite direction in the
zigzag path (i is a white vertex in P’). If we define #; as 0 or 1 according to i being white or
black in P’, then tp (i) = 1;{i}. We do not distinguish between A C E and its 0, 1 characteristic
vector. Thus the empty set and the zero vector are the same. It is easy to show that given P any
0-1 choice for (#1, #2, ..., t|g|) defines P’, whence a lacet for P in some surface.

Let cp = 7p + Ap. Observe that cp (i) is the set of edges occurring once in a closed path in
G u. Therefore, cp (i) € CS(G p) and likewise cp~(;) € CS(Gp). In Fig. 2 we see that cp(1) =
BU{2,8,7,6},cp(3) = {3} U {8, 7} and, indeed, {2, 8, 7, 6} and {3, 8, 7} are in CS(G ). From
the definitions, it follows that if P has a single vertex, for any i, tp(i) + tp~(i) = {i} and that
cp~(i) + cp(i) ={i} and so, cp~ + cp is the identity linear transformation.

Define bp =cp~ocp =cpocp~ = c%, + cp. The image of bp is CS(G ) N CS(G p). More-
over its dimension is 2 minus the Euler characteristic of Surf(M, D). These facts were first
proved in [7]. They also appear in [9], and in [3].

Let A(ﬁ) = A be the n x n matrix with entries in GF(2) where its (i, j)-entry, A;;, is 1 if and
only if j € A(i) or equivalently, i € A(j). Denote by K the rectangle of A, arithmetic modulo 2.
The (i, j)-entry of K is denoted «;;. If A C E, thenlets;(A)={j € A|t; =1}

Proposition 3 (Lemma on bp). The linear transformation bp = cp o cp~ satisfies
bp(i) =2530) +si (A5 (),

jebpli) & ie€bp(j) & |ep()Nep~(j)|=1 mod2
& kj+A+t+t)r;=1 mod2.

Proof. Since cp + cp~ is the identity, bp = c%, + cp. Thus,
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bp(@) = [cp +cp]() = [(tp +25)° + (zp +25) (D
=[t3 +tprp+ArpTp + A% +1p +25](0).
But 112, =1p and so bp(i) = [AZF +tpAp +ApTp + Ap](@E). If i is black in P’, then ApTp(i) =
Ap(@), and bp (i) = 23+ tpAp] () = A5() +Tphp (i) = A5(0) +5i (5 (). Note that p A5 (i)
is the subset of black vertices in A5 (i). If i is white in P’, then AzTp(i) =¥, and bp(i) =
(23 4 tphp +2510) = 245 + [tphp +251() = 45,(0) +5i (A5 (). Note that [tpAp +A51()
is the subset of white vertices in A5 (i). This proves the first part.
The equivalences

jebpli) & iebp(j) & |ep()Nep~(j)|=1 mod2

are straightforward from the symmetry of A inducing similar symmetry on bp and from its
definition as cp o cp~. Finally we prove j € bp(i) < k;j + (1 +1; +1;)A;; = 1 mod 2, using the
first part of the lemma. We have j € bp(i) & [j € )»21_3(1') and j ¢ s;(Ap(@))] or [j ¢ )\21_3(1') and
JE€siQp()] © [kij = land (A;j =0ort; +t;=1)]or[kjj=0and A;;j =1 and t; +t; = 0]
& kij + (1 +1 +1t;)A;j =1 mod 2, establishing the lemma. O

4. Solution of the Gauss code problem in arbitrary surfaces

The genus of a non-orientable surface is 2 minus its Euler characteristic, while the genus of
an orientable surface is the previous value divided by 2. From the parity theorem and the fact
that cp is surjective follow that P has all its lacets in an orientable surface if and only if |A(i)]
is even for every i. Therefore, if there exists any i with |A(i)| odd, then all the lacets for P
are in non-orientable surfaces. These facts permit us to classify Gauss codes P as orientable or
non-orientable in the obvious way, via the parity of the [A5()|’s,i =1,...,n.

A fundamental observation is that |cp(i) N cp~(j)| = 1 mod 2 is the intersection number
mod 2 of the homology classes of c¢p (i) and cp~(j) (they are in dual cellular decompositions
and only dual edges intersect). So, this number is invariant (see [15, Sections 66-74]) if we
replace cp (i) and cp~(j) by any homologous cycles. Let (§;,42,...,&¢, 11,12, ...,1g) be the
standard homology basis (see Fig. 3) of TS, the orientable surface of genus g, formed by attach-
ing g (orientable) handles to the 2-sphere. Let (§7,&7, ..., 5 , ni‘, T)E, el r;Z,) be the standard

Fig. 3. Dual standard basis for the homology of Tg and IP’(,%, (example for the case g = 3).
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homology dual basis (see also Fig. 3) of Tg. There are unique x;jj, yin, x;h, y;fh in GF(2) such
that

g 8 g g
cp(D)~ Y xinkn+ Y yintn.  cp~()~ Y XER+ Y Vb
h=1 h=1 h=1 h=1
The intersection number mod 2 of the homology classes of cp (i) and cp~(j) can be expressed
as Zi: | (xihx;h + yin y;h) mod 2, since &, only intersects its dual %‘: and n;, only intersects its
dual 7. Note that the elements of the standard dual pair of basis satisfy &, ~ n, and n}; ~ &,
h=1,...,g. Therefore,

g 8 g g
cp~(j)~ Zx}hf;: + Zyﬁ,nz ~ ij*-hnh + Zyi*héh-
h=1 h=1 h=1 h=1
Now consider

g g
cp()~ Y xjnén+ Y Yinth,
h=1 h=1

and take into account that cp(j) ~ cp~(j): both of these cycles are homologous to a common
pre-image under ¥, and ¥.”. It follows that x*, = y;; and y¥, = x;;. We then get

8
lep () Nep~()| =D (xinyjn + yinxjn) mod 2. )
h=1
We turn now to the non-orientable surface of genus g, denoted by ]P’é, formed by attach-

ing g cross-caps to the 2-sphere. It has standard basis (1, {2, ..., {¢) and dual standard basis
(¢f, 85, &), see Fig. 3. We have unique z;; and zjh satisfying

8 8
cp(@)~ Y zintn,  cp~()~ D i

h=1 h=1

A similar, but simpler reasoning shows that ¢, ~ ¢ and zj;, = Z7h implying

8 g
lepG) Nep~(N| =D zinzly =D zinzjn mod 2. 2)
h=1 h=1
By a tight solution to the system in the next proposition we mean that for each 4 there is an i
so that x;; = 1 or y;; = 1. If a solution is not tight there will be unused handles which can be
discarded (g can be made smaller).

Proposition 4 (Theorem on orientable Gauss codes). Let P be an orientable Gauss code. Then
the set of lacets for P in a orientable surface of genus g are in 1-1 correspondence with the tight
solutions of the quadratic system of n* equations

8
Kij + (Lt 1)hij =Y inyjn +Xjnyin) VG, ). 3)
h=1

where the unknowns are t;, xijp and yip, 1 <i <n, 1 <h<g.
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For the non-orientable case by a tight solution to the system in the next proposition we mean
that for each / there is an i so that z;;, = 1. If a solution is not tight there will be unused cross-caps
which can be discarded (g can be made smaller).

Proposition 5 (Theorem on non-orientable Gauss codes). Let P be a non-orientable Gauss code.
Then the set of lacets for P in a non-orientable surface of genus g are in 1-1 correspondence
with the tight solutions of the quadratic system of n* equations

8
j + (Ut 1)h =Y zinzjn VG, ), @
h=1

where the unknowns are t; and zijp, 1 <i <n, 1 <h<g.

Proof. The theorems are proved together, as a consequence of the second part of Proposition 3
and the above orientable and non-orientable formulas (1) and (2) for |cp(i) N cp~(j)|. Any
choice of t = (11, 12, ..., 1) produces a lacet for P in some surface. The existence of solutions in
genus g is a necessary and sufficient condition for the embedding to be on the surface of genus g.
Of course, we are interested in the smallest g that produces a consistent system. O

5. Linear systems

The necessary and sufficient condition for the existence of lacets for P on the 2-sphere is the
case g = 0 of system (3):
A+4+1tp)rij=xij V3, J). (®)]
This is a linear system on the variables #;. As we show below the analysis of its inconsistency
implies the characterization given by Rosenstiehl [13,14].
We have a similar reduction from quadratic to linear equations for the non-orientable cases of

genus 1 (projective plane) and 2 (Klein bottle). Consider the equation of system (4) correspond-
ing to (i,7). Since A;; =0 and zl.Zh = z;;, we have
g g
ki + (1 + 8 +1)hii = Zzihzih & K= Zzih-
h=1 h=1

Suppose g = 1. Then z;1 = «;; and zj| = «j;, therefore the system becomes
L+t +tp)hij =kij + ik V3, ). (6)

Note that the variables z;;, disappear and we get an equivalent linear system on the variables ¢;.
As we show next the characterization given in Lins’ thesis [7] follows from analyzing the incon-
sistency of this linear system.

If P is orientable, let K = kij. If it is non-orientable, let «; ;= kij tKiikjj. The two systems
above become a single one

(1+ti+tj))»,-j=Ki’j Y@, j). @)

A bad edge is a pair (i, j) so that A;; =0 and Ki/j = 1. By abuse of language, denote also by A

the graph whose adjacency matrix is A. A bad pblygon in A is a polygon in it so that its number
of edges (i, j) with ] i= 0 is odd. We have the following corollary.



514 S. Lins et al. / Journal of Combinatorial Theory, Series B 98 (2008) 506515

Proposition 6 (Corollary for g < 1). Let P be a Gauss code. It has a solution in the 2-sphere or
in the projective plane if and only if it does not have a bad edge nor a bad polygon.

Proof. If the system (7) is consistent it clearly does not contain a bad edge. If it contains a
bad polygon summing the equations corresponding to the edges in the polygon produces the
inconsistency 1 = 0. Conversely, if the system is inconsistent there exists a minimal subset of
equations whose sum produces the inconsistency 1 = 0. From the simplicity of the equations in
the system, it follows easily that this set of minimal equations corresponds to a single one (a bad
edge) or to a subset of equations defining a bad polygon. O

This result is equivalent to the characterization of Rosenstiehl [13,14] and of Lins [7].

Now suppose g = 2. Then 7 _, ZihZjh = Zi1Zj1 +Z2i2Zj2 = Zi12j1 + (i +zi) (k55 +251) =
zi1zj1 + kiikjj + Kiizj1 + 2i1kj; + zi12j1. Therefore, Y zinzjn = Kiik jj + KiiZj1 + KjjZil-
The necessary and sufficient condition for the solution in the Klein bottle becomes existence of
solutions for

kij+ A+t +1)hij =kiikjj +kiizj1 +xjjzin YA, j).

The variables zjp, i = 1,...,n, disappear and the system becomes linear. However we do not
have (as in the case g < 1) a simple combinatorial description in graph theoretical structures of a
minimal set of inconsistent equations. From the algorithmic point of view, this is irrelevant, since
we can display the inconsistency.

6. A final remark and acknowledgments

A basic open problem in this theory is to find an algorithmic characterization of the orientable
Gauss codes which do not embed in the torus. We thank Bruce Richter for bringing the Crapo—
Rosenstiehl paper to our attention. We also thank an anonymous referee who read carefully a
previous version of this work giving valuable suggestions for its improvement. The first author
acknowledges the partial support of CNPq (Process number 306106/2006). The second author
acknowledges the partial support for FAPESP contract 2006/03360-4.

References

[1] A. Bondy, U. Murty, Graph Theory with Applications, Am. Elsevier, New York, 1976.
[2] C.P. Bonnington, C.H.C. Little, The Foundations of Topological Graph Theory, Springer-Verlag, Berlin, 1995.
[3] H. Crapo, P. Rosenstiehl, On lacets and their manifolds, Discr. Math. 233 (2001) 299-320.
[4] P.J. Giblin, Graphs, Surfaces and Homology, Chapman & Hall, New York, 1977.
[5] R. Godement, Algebra, Hermann, Paris, 1968.
[6] C. Godsil, G. Royle, Algebraic Graph Theory, Grad. Texts in Math., vol. 207, Springer, New York, 2001.
[71 S. Lins, Graphs of maps, PhD thesis, University of Waterloo, 1980. Available as math.CO/0305058 at http://
front.math.ucdavis.edu.
[8] S. Lins, Graph-encoded maps, J. Combin. Theory B 32 (1982) 171-181.
[9] S. Lins, B. Richter, H. Shank, The Gauss code problem off the plane, Aequationes Math. 33 (1987) 81-95.
[10] L. Lovasz, M. Marx, A forbidden substructure characterization of Gauss codes, Acta Sci. Math. 38 (1976) 115-119.
[11] B. Mohar, C. Thomassen, Graphs on Surfaces, The Johns Hopkins Univ. Press, Baltimore, 2001.
[12] E. Oliveira-Lima, Non 2-face colorable Gauss codes in the projective plane, PhD thesis, UFPE, 2003 (in Por-
tuguese).
[13] P. Rosenstiehl, Solution algebrique du probleme de Gauss sur la permutation des points d’intersection d’une or
plusiers courbes fermees du plan, C. R. Acad. Sci. Paris Sér. I Math. 283 (1976) 551-553.



S. Lins et al. / Journal of Combinatorial Theory, Series B 98 (2008) 506-515 515

[14] P. Rosenstiehl, Characterization des graphes planaires par une diagonale algebrique, C. R. Acad. Sci. Paris Sér. I
Math. 283 (1976).

[15] H. Seifert, W. Threlfall, A Textbook of Topology, Academic Press, New York, 1980.

[16] H. Shank, The theory of left-right paths, in: Combinatorial Mathematics III, in: Lecture Notes in Math., vol. 452,
Springer-Verlag, Berlin, 1975, pp. 42-54.



